Thursday, September 25, 2025
HomeLanguagesPython – tensorflow.math.confusion_matrix()

Python – tensorflow.math.confusion_matrix()

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks.  confusion_matrix() is used to find the confusion matrix from predictions and labels.

Syntax: tensorflow.math.confusion_matrix( labels, predictions, num_classes, weights, dtype,name)
 

Parameters:

  • labels: It’s a 1-D Tensor which contains real labels for the classification task.
  • predictions: It’s also a 1-D Tensor of same shape as labels. It’s value represents the predicted class.
  • num_classes(optional): It is the possible number of labels/class classification task might have. If it’s not provided then num_classes will be one more than the maximum value in either predictions or labels.
  • weight(optional): It’s a Tensor of same shape as predictions whose values define the corresponding weight for each prediction.
  • dtype(optional): It defines the dtype of returned confusion matrix. Default if tensorflow.dtypes.int32.
  • name(optional): Defines the name for the operation.
     

Returns:
It returns a confusion matrix of shape [n,n] where n is the possible number of labels.
 

Example 1:

Python3




# importing the library
import tensorflow as tf
 
# Initializing the input tensor
labels = tf.constant([1,3,4],dtype = tf.int32)
predictions = tf.constant([1,2,3],dtype = tf.int32)
 
# Printing the input tensor
print('labels: ',labels)
print('Predictions: ',predictions)
 
# Evaluating confusion matrix
res = tf.math.confusion_matrix(labels,predictions)
 
# Printing the result
print('Confusion_matrix: ',res)


Output:

labels:  tf.Tensor([1 3 4], shape=(3,), dtype=int32)
Predictions:  tf.Tensor([1 2 3], shape=(3,), dtype=int32)
Confusion_matrix:  tf.Tensor(
[[0 0 0 0 0]
 [0 1 0 0 0]
 [0 0 0 0 0]
 [0 0 1 0 0]
 [0 0 0 1 0]], shape=(5, 5), dtype=int32)

Example2: This example provide the weights to all predictions.

Python3




# importing the library
import tensorflow as tf
 
# Initializing the input tensor
labels = tf.constant([1,3,4],dtype = tf.int32)
predictions = tf.constant([1,2,4],dtype = tf.int32)
weights = tf.constant([1,2,2], dtype = tf.int32)
 
# Printing the input tensor
print('labels: ',labels)
print('Predictions: ',predictions)
print('Weights: ',weights)
 
# Evaluating confusion matrix
res = tf.math.confusion_matrix(labels, predictions, weights=weights)
 
# Printing the result
print('Confusion_matrix: ',res)


Output:

labels:  tf.Tensor([1 3 4], shape=(3,), dtype=int32)
Predictions:  tf.Tensor([1 2 4], shape=(3,), dtype=int32)
Weights:  tf.Tensor([1 2 2], shape=(3,), dtype=int32)
Confusion_matrix:  tf.Tensor(
[[0 0 0 0 0]
 [0 1 0 0 0]
 [0 0 0 0 0]
 [0 0 2 0 0]
 [0 0 0 0 2]], shape=(5, 5), dtype=int32)
RELATED ARTICLES

Most Popular

Dominic
32319 POSTS0 COMMENTS
Milvus
84 POSTS0 COMMENTS
Nango Kala
6682 POSTS0 COMMENTS
Nicole Veronica
11854 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11910 POSTS0 COMMENTS
Shaida Kate Naidoo
6795 POSTS0 COMMENTS
Ted Musemwa
7071 POSTS0 COMMENTS
Thapelo Manthata
6754 POSTS0 COMMENTS
Umr Jansen
6761 POSTS0 COMMENTS