Friday, September 5, 2025
HomeLanguagesPython | Tensorflow log1p() method

Python | Tensorflow log1p() method

Tensorflow is an open-source machine learning library developed by Google. One of its applications is to develop deep neural networks. 
The module tensorflow.math provides support for many basic mathematical operations. Function tf.log1p() [alias tf.math.log1p] provides support for the natural logarithmic function in Tensorflow. It expects the input in form of complex numbers as $a+bi$ or floating point numbers. The input type is tensor and if the input contains more than one element, an element-wise logarithm of $1+x$ is computed, y=\log_e (1+x)}$ .
 

Syntax: tf.log1p(x, name=None) or tf.math.log1p(x, name=None)
Parameters
x: A Tensor of type bfloat16, half, float32, float64, complex64 or complex128. 
name (optional): The name for the operation.
Return type: A Tensor with the same size and type as that of x. 
 

Code #1: 
 

Python3




# Importing the Tensorflow library
import tensorflow as tf
 
# A constant vector of size 5
a = tf.constant([-1.5, -1, -0.5, 0, 0.5, 1, 1.5], dtype = tf.float32)
 
# Applying the log1p function and
# storing the result in 'b'
b = tf.log1p(a, name ='log1p')
 
# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input type:', a)
    print('Input:', sess.run(a))
    print('Return type:', b)
    print('Output:', sess.run(b))


Output: 
 

Input type: Tensor("Const:0", shape=(7, ), dtype=float32)
Input: [-1.5 -1.  -0.5  0.   0.5  1.   1.5]
Return type: Tensor("log1p:0", shape=(7, ), dtype=float32)
Output: [        nan        -inf -0.6931472   0.          0.4054651   0.6931472
  0.91629076]

 
$ nan $ denotes that natural logarithm of 1+x doesn’t exist for negative values and $ -inf $ denotes that it approaches to negative infinity as the input approaches to -1.
Code #2: Visualization 
 

Python3




# Importing the Tensorflow library
import tensorflow as tf
 
# Importing the NumPy library
import numpy as np
 
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
 
# A vector of size 20 with values from -1 to 0 and 0 to 10
a = np.append(np.linspace(-1, 0, 10), np.linspace(0, 10, 10))
 
# Applying the logarithmic function and
# storing the result in 'b'
b = tf.log1p(a, name ='log1p')
 
# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input:', a)
    print('Output:', sess.run(b))
    plt.plot(a, sess.run(b), color = 'red', marker = "o")
    plt.title("tensorflow.abs")
    plt.xlabel("X")
    plt.ylabel("Y")
    plt.grid()
 
    plt.show()


Output: 
 

Input: [-1.         -0.88888889 -0.77777778 -0.66666667 -0.55555556 -0.44444444
 -0.33333333 -0.22222222 -0.11111111  0.          0.          1.11111111
  2.22222222  3.33333333  4.44444444  5.55555556  6.66666667  7.77777778
  8.88888889 10.        ]
Output: [       -inf -2.19722458 -1.5040774  -1.09861229 -0.81093022 -0.58778666
 -0.40546511 -0.25131443 -0.11778304  0.          0.          0.7472144
  1.17007125  1.46633707  1.69459572  1.88031287  2.03688193  2.17222328
  2.29141179  2.39789527]

 

 

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32265 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6634 POSTS0 COMMENTS
Nicole Veronica
11801 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11863 POSTS0 COMMENTS
Shaida Kate Naidoo
6752 POSTS0 COMMENTS
Ted Musemwa
7025 POSTS0 COMMENTS
Thapelo Manthata
6701 POSTS0 COMMENTS
Umr Jansen
6718 POSTS0 COMMENTS