TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning neural networks.
identity_n() is used get a list of Tensor with same shape and content as input Tensor.
Syntax: tensorflow.identity_n( input, name)
Parameters:
- input: It is a Tensor.
- name(optional): It defines the name for the operation.
Returns: It returns a list of Tensors with same shape and content as input.
Example 1:
Python3
# Importing the library import tensorflow as tf # Initializing the input data = tf.constant([[ 1 , 2 , 3 ], [ 3 , 4 , 5 ], [ 5 , 6 , 7 ]]) # Printing the input print ( 'data: ' , data) # Calculating result res = tf.identity_n(data) # Printing the result print ( 'res: ' , res) |
Output:
data: tf.Tensor( [[1 2 3] [3 4 5] [5 6 7]], shape=(3, 3), dtype=int32) res: [<tf.Tensor: shape=(3, ), dtype=int32, numpy=array([1, 2, 3], dtype=int32)>, <tf.Tensor: shape=(3, ), dtype=int32, numpy=array([3, 4, 5], dtype=int32)>, <tf.Tensor: shape=(3, ), dtype=int32, numpy=array([5, 6, 7], dtype=int32)>]
Example 2:
Python3
# Importing the library import tensorflow as tf # Initializing the input data = tf.constant([ 1 , 2 , 3 ]) # Printing the input print ( 'data: ' , data) # Calculating result res = tf.identity_n(data) # Printing the result print ( 'res: ' , res) |
Output:
data: tf.Tensor([1 2 3], shape=(3, ), dtype=int32) res: [<tf.Tensor: shape=(), dtype=int32, numpy=1>, <tf.Tensor: shape=(), dtype=int32, numpy=2>, <tf.Tensor: shape=(), dtype=int32, numpy=3>]