Friday, September 5, 2025
HomeLanguagesPython – tensorflow.GradientTape.batch_jacobian()

Python – tensorflow.GradientTape.batch_jacobian()

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks. 

batch_jacobian() is used to compute and stack the per example jacobian.

Syntax: batch_jacobian( target, source, unconnected_gradients, parallel_iterations, experimental_use_pfor )

Parameters:

  • target: It is a Tensor having minimum rank 2.
  • source: It is a Tensor having minimum rank 2.
  • unconnected_gradients(optional): It’s value can either be zero or None. Default value is None.
  • parallel_iterations(optional): It is used to control parallel iterations and memory usage.
  • experimental_use_pfor(optional): It is a boolean with default value True. It uses pfor to calculate jacobian when set to true otherwise tf.while_loop is used.

Returns: It returns a Tensor. 

Example 1:

Python3




# Importing the library
import tensorflow as tf
  
x = tf.constant([[4, 2],[1, 3]], dtype=tf.dtypes.float32)
  
# Using GradientTape
with tf.GradientTape() as gfg:
  gfg.watch(x)
  y = x * x * x
  
# Computing jacobian
res  = gfg.batch_jacobian(y, x) 
  
# Printing result
print("res: ",res)


Output:

res:  tf.Tensor(
[[[48.  0.]
  [ 0. 12.]]

 [[ 3.  0.]
  [ 0. 27.]]], shape=(2, 2, 2), dtype=float32)

Example 2:

Python3




# Importing the library
import tensorflow as tf
  
x = tf.constant([[4, 2],[1, 3]], dtype=tf.dtypes.float32)
  
# Using GradientTape
with tf.GradientTape() as gfg:
  gfg.watch(x)
  
  # Using nested GradientTape for calculating higher order jacobian
  with tf.GradientTape() as gg:
    gg.watch(x)
    y = x * x * x
  # Computing first order jacobian
  first_order = gg.batch_jacobian(y, x)
  
# Computing Second order jacobian
second_order  = gfg.batch_jacobian(first_order, x) 
  
# Printing result
print("first_order: ",first_order)
print("second_order: ",second_order)


Output:

first_order:  tf.Tensor(
[[[48.  0.]
  [ 0. 12.]]

 [[ 3.  0.]
  [ 0. 27.]]], shape=(2, 2, 2), dtype=float32)
second_order:  tf.Tensor(
[[[[24.  0.]
   [ 0.  0.]]

  [[ 0.  0.]
   [ 0. 12.]]]


 [[[ 6.  0.]
   [ 0.  0.]]

  [[ 0.  0.]
   [ 0. 18.]]]], shape=(2, 2, 2, 2), dtype=float32)


Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32265 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6634 POSTS0 COMMENTS
Nicole Veronica
11801 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11864 POSTS0 COMMENTS
Shaida Kate Naidoo
6752 POSTS0 COMMENTS
Ted Musemwa
7026 POSTS0 COMMENTS
Thapelo Manthata
6703 POSTS0 COMMENTS
Umr Jansen
6719 POSTS0 COMMENTS