Friday, October 10, 2025
HomeLanguagesPython – tensorflow.dynamic_partition()

Python – tensorflow.dynamic_partition()

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks.

dynamic_partition()  is used to divide the data into number of partitions.

Syntax: tensorflow.dynamic_partition(data, partitions, num_partitions, name)

Parameters:

  • data : It is the input tensor that need to be partitioned.
  • partitions: It is Tensor of type int32 and it’s data should be in the range [0, num_partitions).
  • num_partitions: It defines the number of partitions.
  • name(optional): It defines the name for the operation.

Returns:

It returns a list of tensor with num_partitions items. Each tensor in the list have same dtype as data.

Example 1: Dividing data into two partitions

Python3




# Importing the library
import tensorflow as tf
  
# Initializing the input
data = [1, 2, 3, 4, 5]
num_partitions = 2
partitions = [0, 0, 1, 0, 1]
  
# Printing the input
print('data: ', data)
print('partitions:', partitions)
print('num_partitions:', num_partitions)
  
# Calculating result
x = tf.dynamic_partition(data, partitions, num_partitions)
  
  
# Printing the result
print('x[0]: ', x[0])
print('x[1]: ', x[1])


Output:

data:  [1, 2, 3, 4, 5]
partitions: [0, 0, 1, 0, 1]
num_partitions: 2
x[0]:  tf.Tensor([1 2 4], shape=(3, ), dtype=int32)
x[1]:  tf.Tensor([3 5], shape=(2, ), dtype=int32)


Example 2: Dividing into 3 Tensors

Python3




# Importing the library
import tensorflow as tf
  
# Initializing the input
data = [1, 2, 3, 4, 5, 6, 7]
num_partitions = 3
partitions = [0, 2, 1, 0, 1, 2, 2]
  
# Printing the input
print('data: ', data)
print('partitions:', partitions)
print('num_partitions:', num_partitions)
  
# Calculating result
x = tf.dynamic_partition(data, partitions, num_partitions)
  
  
# Printing the result
print('x[0]: ', x[0])
print('x[1]: ', x[1])
print('x[2]: ', x[2])


Output:

data:  [1, 2, 3, 4, 5, 6, 7]
partitions: [0, 2, 1, 0, 1, 2, 2]
num_partitions: 3
x[0]:  tf.Tensor([1 4], shape=(2, ), dtype=int32)
x[1]:  tf.Tensor([3 5], shape=(2, ), dtype=int32)
x[2]:  tf.Tensor([2 6 7], shape=(3, ), dtype=int32)
Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32349 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6715 POSTS0 COMMENTS
Nicole Veronica
11878 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6837 POSTS0 COMMENTS
Ted Musemwa
7097 POSTS0 COMMENTS
Thapelo Manthata
6792 POSTS0 COMMENTS
Umr Jansen
6791 POSTS0 COMMENTS