Thursday, September 4, 2025
HomeLanguagesPython – tensorflow.dynamic_partition()

Python – tensorflow.dynamic_partition()

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks.

dynamic_partition()  is used to divide the data into number of partitions.

Syntax: tensorflow.dynamic_partition(data, partitions, num_partitions, name)

Parameters:

  • data : It is the input tensor that need to be partitioned.
  • partitions: It is Tensor of type int32 and it’s data should be in the range [0, num_partitions).
  • num_partitions: It defines the number of partitions.
  • name(optional): It defines the name for the operation.

Returns:

It returns a list of tensor with num_partitions items. Each tensor in the list have same dtype as data.

Example 1: Dividing data into two partitions

Python3




# Importing the library
import tensorflow as tf
  
# Initializing the input
data = [1, 2, 3, 4, 5]
num_partitions = 2
partitions = [0, 0, 1, 0, 1]
  
# Printing the input
print('data: ', data)
print('partitions:', partitions)
print('num_partitions:', num_partitions)
  
# Calculating result
x = tf.dynamic_partition(data, partitions, num_partitions)
  
  
# Printing the result
print('x[0]: ', x[0])
print('x[1]: ', x[1])


Output:

data:  [1, 2, 3, 4, 5]
partitions: [0, 0, 1, 0, 1]
num_partitions: 2
x[0]:  tf.Tensor([1 2 4], shape=(3, ), dtype=int32)
x[1]:  tf.Tensor([3 5], shape=(2, ), dtype=int32)


Example 2: Dividing into 3 Tensors

Python3




# Importing the library
import tensorflow as tf
  
# Initializing the input
data = [1, 2, 3, 4, 5, 6, 7]
num_partitions = 3
partitions = [0, 2, 1, 0, 1, 2, 2]
  
# Printing the input
print('data: ', data)
print('partitions:', partitions)
print('num_partitions:', num_partitions)
  
# Calculating result
x = tf.dynamic_partition(data, partitions, num_partitions)
  
  
# Printing the result
print('x[0]: ', x[0])
print('x[1]: ', x[1])
print('x[2]: ', x[2])


Output:

data:  [1, 2, 3, 4, 5, 6, 7]
partitions: [0, 2, 1, 0, 1, 2, 2]
num_partitions: 3
x[0]:  tf.Tensor([1 4], shape=(2, ), dtype=int32)
x[1]:  tf.Tensor([3 5], shape=(2, ), dtype=int32)
x[2]:  tf.Tensor([2 6 7], shape=(3, ), dtype=int32)
Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32261 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6626 POSTS0 COMMENTS
Nicole Veronica
11795 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11855 POSTS0 COMMENTS
Shaida Kate Naidoo
6747 POSTS0 COMMENTS
Ted Musemwa
7023 POSTS0 COMMENTS
Thapelo Manthata
6695 POSTS0 COMMENTS
Umr Jansen
6714 POSTS0 COMMENTS