Thursday, December 18, 2025
HomeLanguagesPython | Tensorflow cos() method

Python | Tensorflow cos() method

Tensorflow is an open-source machine learning library developed by Google. One of its applications is to develop deep neural networks. 

The module tensorflow.math provides support for many basic mathematical operations. Function tf.cos() [alias tf.math.cos] provides support for the cosine function in Tensorflow. It expects the input in radian form and the output is in the range [-1, 1]. The input type is tensor and if the input contains more than one element, element-wise cosine is computed.

Syntax: tf.cos(x, name=None) or tf.math.cos(x, name=None) 

Parameters
x: A tensor of any of the following types: float16, float32, float64, complex64, or complex128. 
name (optional): The name for the operation. 
Return type: A tensor with the same type as that of x.

Code #1: 

Python3




# Importing the Tensorflow library
import tensorflow as tf
 
# A constant vector of size 6
a = tf.constant([1.0, -0.5, 3.4, -2.1, 0.0, -6.5], dtype = tf.float32)
 
# Applying the cos function and
# storing the result in 'b'
b = tf.cos(a, name ='cos')
 
# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input type:', a)
    print('Input:', sess.run(a))
    print('Return type:', b)
    print('Output:', sess.run(b))


Output:

Input type: Tensor("Const_2:0", shape=(6, ), dtype=float32)
Input: [ 1.        -0.5        3.4000001 -2.0999999  0.        -6.5      ]
Return type: Tensor("cos:0", shape=(6, ), dtype=float32)
Output: [ 0.54030228  0.87758255 -0.96679819 -0.50484604  1.          0.97658765]

  Code #2: Visualization 

Python3




# Importing the Tensorflow library
import tensorflow as tf
 
# Importing the NumPy library
import numpy as np
 
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
 
# A vector of size 15 with values from -5 to 5
a = np.linspace(-5, 5, 15)
 
# Applying the cos function and
# storing the result in 'b'
b = tf.cos(a, name ='cos')
 
# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input:', a)
    print('Output:', sess.run(b))
    plt.plot(a, sess.run(b), color = 'red', marker = "o")
    plt.title("tensorflow.cos")
    plt.xlabel("X")
    plt.ylabel("Y")
 
    plt.show()


Output:

Input: [-5.         -4.28571429 -3.57142857 -2.85714286 -2.14285714 -1.42857143
 -0.71428571  0.          0.71428571  1.42857143  2.14285714  2.85714286
  3.57142857  4.28571429  5.        ]
Output: [ 0.28366219 -0.41384591 -0.90903414 -0.9598162  -0.5413659   0.1417459
  0.75556135  1.          0.75556135  0.1417459  -0.5413659  -0.9598162
 -0.90903414 -0.41384591  0.28366219]

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32455 POSTS0 COMMENTS
Milvus
108 POSTS0 COMMENTS
Nango Kala
6823 POSTS0 COMMENTS
Nicole Veronica
11958 POSTS0 COMMENTS
Nokonwaba Nkukhwana
12036 POSTS0 COMMENTS
Shaida Kate Naidoo
6958 POSTS0 COMMENTS
Ted Musemwa
7203 POSTS0 COMMENTS
Thapelo Manthata
6910 POSTS0 COMMENTS
Umr Jansen
6890 POSTS0 COMMENTS