Thursday, September 4, 2025
HomeLanguagesPython | Tensorflow atanh() method

Python | Tensorflow atanh() method

Tensorflow is an open-source machine learning library developed by Google. One of its applications is to develop deep neural networks. 
The module tensorflow.math provides support for many basic mathematical operations. Function tf.atanh() [alias tf.math.atanh] provides support for the inverse hyperbolic tangent function in Tensorflow. Its domain is in the range [-1, 1] and it returns nan for any input outside this range. The input type is tensor and if the input contains more than one element, element-wise inverse hyperbolic tangent is computed.

Syntax: tf.atanh(x, name=None) or tf.math.atanh(x, name=None)
Parameters
x: A tensor of any of the following types: float16, float32, float64, complex64, or complex128. 
name (optional): The name for the operation.
Return type: A tensor with the same type as that of x. 
 

Code #1: 

Python3




# Importing the Tensorflow library
import tensorflow as tf
   
# A constant vector of size 6
a = tf.constant([1.0, -0.5, -1, 2.4, 0.0, -6.5], dtype = tf.float32)
   
# Applying the atanh function and
# storing the result in 'b'
b = tf.atanh(a, name ='atanh')
   
# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input type:', a)
    print('Input:', sess.run(a))
    print('Return type:', b)
    print('Output:', sess.run(b))


Output: 

Input type: Tensor("Const_3:0", shape=(6, ), dtype=float32)
Input: [ 1.  -0.5 -1.   2.4  0.  -6.5]
Return type: Tensor("atanh_1:0", shape=(6, ), dtype=float32)
Output: [        inf -0.54930615        -inf         nan  0.                 nan]

Code #2: Visualization 

Python3




# Importing the Tensorflow library
import tensorflow as tf
  
# Importing the NumPy library
import numpy as np
  
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
  
# A vector of size 15 with values from -1 to 1
a = np.linspace(-1, 1, 15)
  
# Applying the inverse hyperbolic tangent
# function and storing the result in 'b'
b = tf.atanh(a, name ='atanh')
  
# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input:', a)
    print('Output:', sess.run(b))
    plt.plot(a, sess.run(b), color = 'red', marker = "o")
    plt.title("tensorflow.atanh")
    plt.xlabel("X")
    plt.ylabel("Y")
  
    plt.show()


Output: 

Input: [-1.         -0.85714286 -0.71428571 -0.57142857 -0.42857143 -0.28571429
 -0.14285714  0.          0.14285714  0.28571429  0.42857143  0.57142857
  0.71428571  0.85714286  1.        ]
Output: [       -inf -1.28247468 -0.89587973 -0.64964149 -0.45814537 -0.29389333
 -0.14384104  0.          0.14384104  0.29389333  0.45814537  0.64964149
  0.89587973  1.28247468         inf]

 

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32260 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6625 POSTS0 COMMENTS
Nicole Veronica
11795 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11855 POSTS0 COMMENTS
Shaida Kate Naidoo
6747 POSTS0 COMMENTS
Ted Musemwa
7023 POSTS0 COMMENTS
Thapelo Manthata
6694 POSTS0 COMMENTS
Umr Jansen
6714 POSTS0 COMMENTS