Friday, October 17, 2025
HomeLanguagesPython | Tensorflow atan() method

Python | Tensorflow atan() method

Tensorflow is an open-source machine learning library developed by Google. One of its applications is to develop deep neural networks. 
The module tensorflow.math provides support for many basic mathematical operations. Function tf.atan() [alias tf.math.atan] provides support for the inverse tangent function in Tensorflow. It gives the output in radian form. The input type is tensor and if the input contains more than one element, element-wise inverse tangent is computed.
 

Syntax: tf.atan(x, name=None) or tf.math.atan(x, name=None)
Parameters
x: A tensor of any of the following types: bfloat16, half, float32, float64, int32, int64, complex64, or complex128. 
name (optional): The name for the operation.
Return type: A tensor with the same type as that of x. 
 

Code #1: 
 

Python3




# Importing the Tensorflow library
import tensorflow as tf
 
# A constant vector of size 6
a = tf.constant([1.0, -0.5, 3.4, 0.2, 0.0, -2],
                           dtype = tf.float32)
 
# Applying the atan function and
# storing the result in 'b'
b = tf.atan(a, name ='atan')
 
# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input type:', a)
    print('Input:', sess.run(a))
    print('Return type:', b)
    print('Output:', sess.run(b))


Output: 
 

Input type: Tensor("Const_8:0", shape=(6, ), dtype=float32)
Input: [ 1.  -0.5  3.4  0.2  0.  -2. ]
Return type: Tensor("atan:0", shape=(6, ), dtype=float32)
Output: [ 0.7853982  -0.4636476   1.2847449   0.19739556  0.         -1.1071488 ]

 
Code #2: Visualization 
 

Python3




# Importing the Tensorflow library
import tensorflow as tf
 
# Importing the NumPy library
import numpy as np
 
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
 
# A vector of size 15 with values from -5 to 5
a = np.linspace(-5, 5, 15)
 
# Applying the inverse tangent function and
# storing the result in 'b'
b = tf.atan(a, name ='atan')
 
# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input:', a)
    print('Output:', sess.run(b))
    plt.plot(a, sess.run(b), color = 'red', marker = "o")
    plt.title("tensorflow.atan")
    plt.xlabel("X")
    plt.ylabel("Y")
 
    plt.show()


Output: 
 

Input: [-5.         -4.28571429 -3.57142857 -2.85714286 -2.14285714 -1.42857143
 -0.71428571  0.          0.71428571  1.42857143  2.14285714  2.85714286
  3.57142857  4.28571429  5.        ]
Output: [-1.37340077 -1.34156439 -1.29778762 -1.23412151 -1.13416917 -0.96007036
 -0.62024949  0.          0.62024949  0.96007036  1.13416917  1.23412151
  1.29778762  1.34156439  1.37340077]

 

 

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS