Friday, October 3, 2025
HomeLanguagesPython | Tensorflow asinh() method

Python | Tensorflow asinh() method

Tensorflow is an open-source machine learning library developed by Google. One of its applications is to develop deep neural networks.

The module tensorflow.math provides support for many basic mathematical operations. Function tf.asinh() [alias tf.math.asinh] provides support for the inverse hyperbolic sine function in Tensorflow. The input type is tensor and if the input contains more than one element, element-wise inverse hyperbolic sine is computed.

Syntax: tf.asinh(x, name=None) or tf.math.asinh(x, name=None)

Parameters:
x: A tensor of any of the following types: float16, float32, float64, complex64, or complex128.
name (optional): The name for the operation.

Return type: A tensor with the same type as that of x.

Code #1:

Python3




# Importing the Tensorflow library
import tensorflow as tf
    
# A constant vector of size 6
a = tf.constant([1.0, -0.5, 3.4, 22.1, 0.0, -6.5],
                               dtype = tf.float32)
    
# Applying the asinh function and
# storing the result in 'b'
b = tf.asinh(a, name ='asinh')
    
# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input type:', a)
    print('Input:', sess.run(a))
    print('Return type:', b)
    print('Output:', sess.run(b))


Output:

Input type: Tensor("Const_1:0", shape=(6, ), dtype=float32)
Input: [ 1.  -0.5  3.4 22.1  0.  -6.5]
Return type: Tensor("asinh:0", shape=(6, ), dtype=float32)
Output: [ 0.8813736  -0.48121184  1.9378793   3.7892363   0.         -2.5708146 ]

 

Code #2: Visualization

Python3




# Importing the Tensorflow library
import tensorflow as tf
   
# Importing the NumPy library
import numpy as np
   
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
   
# A vector of size 15 with values from -10 to 10
a = np.linspace(-10, 10, 15)
   
# Applying the inverse hyperbolic sine
# function and storing the result in 'b'
b = tf.asinh(a, name ='asinh')
   
# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input:', a)
    print('Output:', sess.run(b))
    plt.plot(a, sess.run(b), color = 'red', marker = "o") 
    plt.title("tensorflow.asinh") 
    plt.xlabel("X") 
    plt.ylabel("Y") 
   
    plt.show()


Output:

Input: [-10.          -8.57142857  -7.14285714  -5.71428571  -4.28571429
  -2.85714286  -1.42857143   0.           1.42857143   2.85714286
   4.28571429   5.71428571   7.14285714   8.57142857  10.        ]
Output: [-2.99822295 -2.84496713 -2.66412441 -2.44368627 -2.16177575 -1.77227614
 -1.15447739  0.          1.15447739  1.77227614  2.16177575  2.44368627
  2.66412441  2.84496713  2.99822295]

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32331 POSTS0 COMMENTS
Milvus
85 POSTS0 COMMENTS
Nango Kala
6703 POSTS0 COMMENTS
Nicole Veronica
11868 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11929 POSTS0 COMMENTS
Shaida Kate Naidoo
6818 POSTS0 COMMENTS
Ted Musemwa
7080 POSTS0 COMMENTS
Thapelo Manthata
6775 POSTS0 COMMENTS
Umr Jansen
6776 POSTS0 COMMENTS