With the help of sympy.trigsimp() method, we can simplify mathematical expressions using trigonometric identities.
Syntax: trigsimp(expression) Parameters: expression – It is the mathematical expression which needs to be simplified. Returns: Returns a simplified mathematical expression corresponding to the input expression.
Example #1: In this example, we can see that by using sympy.trigsimp() method, we can simplify any mathematical expression.
Python3
# import sympy from sympy import * x = symbols( 'x' ) expr = sin(x) * * 2 + cos(x) * * 2 print ( "Before Simplification : {}" . format (expr)) # Use sympy.trigsimp() method smpl = trigsimp(expr) print ( "After Simplification : {}" . format (smpl)) # This trigonometric expansion also be done using by simplify method expr1 = sin(x) * * 2 + cos(x) * * 2 print ( "Using simplify method : {}" . format (simplify(expr1))) |
Output:
Before Simplification : sin(x)**2 + cos(x)**2 After Simplification : 1 Using simplify method : 1
Example #2:
Python3
# import sympy from sympy import * x = symbols( 'x' ) expr = sin(x) * * 4 - 2 * cos(x) * * 2 * sin(x) * * 2 + cos(x) * * 4 print ( "Before Simplification : {}" . format (expr)) # Use sympy.trigsimp() method smpl = trigsimp(expr) print ( "After Simplification : {}" . format (smpl)) # This trigonometric expansion also be done using by simplify method expr1 = sin(x) * * 4 - 2 * cos(x) * * 2 * sin(x) * * 2 + cos(x) * * 4 print ( "Using simplify method : {}" . format (simplify(expr1))) |
Output:
Before Simplification : sin(x)**4 - 2*cos(x)**2*sin(x)**2 + cos(x)**4 After Simplification : cos(4*x)/2 + 1/2 Using simplify method : cos(4*x)/2 + 1/2