Thursday, January 16, 2025
Google search engine
HomeLanguagesPython | sympy.reduced_totient() method

Python | sympy.reduced_totient() method

With the help of sympy.reduced_totient() method, we can find the Carmichael reduced totient function or lambda(n) in SymPy. reduced_totient(n) or \lambda(n) is the smallest m > 0 such that k^m \equiv 1 \mod n for all k relatively prime to n.

Syntax: reduced_totient(n)

Parameter:
n – It denotes an integer.

Returns: Returns the smallest integer m > 0 such that km % n is equal to 1 for all k relatively prime to n.

Example #1:




# import reduced_totient() method from sympy
from sympy.ntheory import reduced_totient
  
n = 8
  
# Use reduced_totient() method 
reduced_totient_n = reduced_totient(n) 
      
print("lambda({}) =  {} ".format(n, reduced_totient_n)) 
# 1 ^ 2 = 1 (mod 8), 3 ^ 2 = 9 = 1 (mod 8),
# 5 ^ 2 = 25 = 1 (mod 8) and 7 ^ 2 = 49 = 1 (mod 8)


Output:

lambda(8) =  2 

Example #2:




# import reduced_totient() method from sympy
from sympy.ntheory import reduced_totient
  
n = 30
  
# Use reduced_totient() method 
reduced_totient_n = reduced_totient(n) 
      
print("lambda({}) =  {} ".format(n, reduced_totient_n)) 


Output:

lambda(30) =  4

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments