Saturday, December 28, 2024
Google search engine
HomeLanguagesPython | sympy.lambdify() method

Python | sympy.lambdify() method

With the help of sympy.lambdify() method, we can convert a SymPy expression to an expression that can be numerically evaluated. lambdify acts like a lambda function, except it, converts the SymPy names to the names of the given numerical library, usually NumPy or math.

Syntax: lambdify(variable, expression, library)

Parameters:
variable – It is the variable in the mathematical expression.
expression – It is the mathematical expression which is converted into its respective name in the given library.
library – It is the Python library to which expression is to be converted into.

Returns: Returns a lambda function which can evaluate a mathematical expression.

Example #1:
In this example we can see that by using sympy.lambdify() method, we can get a lambda function from a mathematical expression.




# import sympy
from sympy import * 
  
x = symbols('x')
expr = sin(x)
     
# Use sympy.lambdify() method
f = lambdify(x, expr, "math"
    
print("Using lambda function in SymPy to evaluate sin(90) : {}".format(f(90))) 


Output:

Using lambda function in SymPy to evaluate sin(90) : 0.893996663601

Example #2:
We can pass a dictionary of sympy_name:numerical_function pair to use lambdify with numerical libraries that it does not know about.




# import sympy
from sympy import * 
  
def squared(n) : 
    return n**2
  
x = symbols('x')
expr = x**2
     
# Use sympy.lambdify() method
f = lambdify(x, expr, {"**" : squared}) 
    
print("Using lambda function in SymPy to evaluate squared function : {}".format(f(10))) 


Output:

Using lambda function in SymPy to evaluate squared function : 100

RELATED ARTICLES

Most Popular

Recent Comments