Wednesday, January 1, 2025
Google search engine
HomeLanguagesPython | sympy.divisor_sigma() method

Python | sympy.divisor_sigma() method

With the help of sympy.divisor_sigma() method, we can find the divisor function \sigma_k(n) for positive integer n. divisor_sigma(n, k) is equal to the sum of all the divisors of n raised to the power of k or sum([x**k for x in divisors(n)]).

Syntax: divisor_sigma(n, k)

Parameter:
n – It denotes an integer.
k – It denotes an integer(optional). Default for k is 1.

Returns: Returns the sum of all the divisors of n raised to the power of k.

Example #1:




# import divisor_sigma() method from sympy
from sympy.ntheory import divisor_sigma
  
n = 8
  
# Use divisor_sigma() method 
divisor_sigma_n = divisor_sigma(n) 
      
print("divisor_sigma({}) =  {} ".format(n, divisor_sigma_n)) 
# 1 ^ 1 + 2 ^ 1 + 4 ^ 1 + 8 ^ 1 = 15


Output:

divisor_sigma(8) =  15 

Example #2:




# import divisor_sigma() method from sympy
from sympy.ntheory import divisor_sigma
  
n = 15
k = 2
  
# Use divisor_sigma() method 
divisor_sigma_n = divisor_sigma(n, k) 
      
print("divisor_sigma({}, {}) =  {} ".format(n, k, divisor_sigma_n)) 
# 1 ^ 2 + 3 ^ 2 + 5 ^ 2 + 15 ^ 2 = 260


Output:

divisor_sigma(15, 2) =  260 

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments