Using Pandas library, we can perform multiple operations on a DataFrame. We can even create and access the subset of a DataFrame in multiple formats. The task here is to create a subset DataFrame by column name. We can choose different methods to perform this task. Here are possible methods mentioned below –
Before performing any action, we need to write few lines of code to import necessary libraries and create a DataFrame.
Creating the DataFrame
Python3
#import pandas import pandas as pd # create dataframe data = { 'Name' : [ 'John' , 'Emily' , 'Lara' , 'Lucas' , 'Katy' , 'Jordan' ], 'Gender' : [ 30 , 27 , 21 , 21 , 16 , 20 ], 'Branch' : [ 'Arts' , 'Arts' , 'Commerce' , 'Science' , 'Science' , 'Science' ], 'pre_1' : [ 9 , 9 , 10 , 7 , 6 , 9 ], 'pre_2' : [ 8 , 7 , 10 , 6 , 8 , 8 ]} df = pd.DataFrame(data) df |
Output:
Method 1: Using Python iloc() function
This function allows us to create a subset by choosing specific values from columns based on indexes.
Syntax:
df_name.iloc[beg_index:end_index+1,beg_index:end_index+1]
Example: Create a subset with Name, Gender and Branch column
Python3
# create a subset of all rows # and Name, Gender and Branch column df.iloc[:, 0 : 3 ] |
Output :
Method 2: Using Indexing Operator
We can use the indexing operator i.e. square brackets to create a subset dataframe
Example: Create a subset with Name, pre_1, and pre_2 column
Python3
# creating subset dataframe using # indexing operator df[[ 'Name' , 'pre_1' , 'pre_2' ]] |
Output –
Method 3: Using filter() method with like keyword
We can use this method particularly when we have to create a subset dataframe with columns having similarly patterned names.
Example: Create a subset with pre_1 and pre_2 column
Python3
# create a subset of columns pre_1 and pre_2 # using filter() method df. filter (like = 'pre' ) |
Output: