Thursday, December 18, 2025
HomeLanguagesPython – seaborn.residplot() method

Python – seaborn.residplot() method

Seaborn is an amazing visualization library for statistical graphics plotting in Python. It provides beautiful default styles and color palettes to make statistical plots more attractive. It is built on the top of matplotlib library and also closely integrated to the data structures from pandas.

seaborn.residplot() :

This method is used to plot the residuals of linear regression. This method will regress y on x and then draw a scatter plot of the residuals. You can optionally fit a lowess smoother to the residual plot, which can help in determining if there is a structure to the residuals.

Syntax: seaborn.residplot(x, y, data=None, lowess=False, x_partial=None, y_partial=None, order=1,
   robust=False, dropna=True, label=None, color=None, scatter_kws=None, line_kws=None, ax=None)

Parameters: The description of some main parameters are given below:

  • x: Data or column name in ‘data’ for the predictor variable.
  • y: Data or column name in ‘data’ for the response variable.
  • data: (optional) DataFrame having `x` and `y` are column names.
  • lowess: (optional) Fit a lowess smoother to the residual scatterplot.
  • dropna: (optional) This parameter takes boolean value. If True, ignore observations with missing data when fitting and plotting.

Return: Axes with the regression plot.

Below is the implementation of above method:

Example 1:

Python3




# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt
  
# loading dataset
data = sns.load_dataset("tips")
  
# draw residplot
sns.residplot(x = "total_bill",
              y = "tip",
              data = data)
  
# show the plot
plt.show()
  
# This code is contributed
# by Deepanshu Rustagi.


Output:

Example 2:

Python3




# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt
  
# loading dataset
data = sns.load_dataset("iris")
  
# draw residplot
# with lowess = True
sns.residplot(x = "petal_length",
              y = "petal_width",
              data = data,
              lowess = True)
  
# show the plot
plt.show()
  
# This code is contributed
# by Deepanshu Rustagi.


Output:

RELATED ARTICLES

1 COMMENT

Most Popular

Dominic
32455 POSTS0 COMMENTS
Milvus
108 POSTS0 COMMENTS
Nango Kala
6823 POSTS0 COMMENTS
Nicole Veronica
11958 POSTS0 COMMENTS
Nokonwaba Nkukhwana
12036 POSTS0 COMMENTS
Shaida Kate Naidoo
6958 POSTS0 COMMENTS
Ted Musemwa
7203 POSTS0 COMMENTS
Thapelo Manthata
6910 POSTS0 COMMENTS
Umr Jansen
6890 POSTS0 COMMENTS