Friday, August 29, 2025
HomeLanguagesPython PyTorch – torch.linalg.cond() Function

Python PyTorch – torch.linalg.cond() Function

In this article, we are going to discuss how to compute the condition number of a matrix in PyTorch. we can get the condition number of a matrix by using torch.linalg.cond() method. 

torch.linalg.cond() method

This method is used to compute the condition number of a matrix with respect to a matrix norm. This method accepts a matrix and batch of matrices as input. It will return a tensor with a computed condition number. It supports input of double, float, cfloat, and cdouble data types. before moving further let’s see the syntax of this method.

Syntax: torch.linalg.cond(M, P=None)

Parameters:

  • M (Tensor): It’s a matrix or a batch of matrices.
  • P (int, inf, -inf, ‘fro’, ‘nuc’, optional): It’s defines the matrix norm that is computed. The default value of P 2-norm.

Returns: It will return a tensor with a computed condition number.

Example 1

In this example, we defined a tensor using torch.tensor, and we will compute the condition number of a matrix with the help of torch.linalg.cond method.

Python3




# import the required library
import torch
  
# define a tensor (matrix)
M = torch.tensor([[-0.1345, -0.7437, 1.2377],
                  [0.9337, 1.6473, 0.4346],
                  [-1.6345, 0.9344, -0.2456]])
  
# display input tensor
print("\n Input Matrix M: \n", M)
  
# compute the condition number
Output = torch.linalg.cond(M)
  
# Display result
print("\n Condition Number: ", Output)


Output:

torch.linalg.cond() in Python PyTorch

 

Example 2

In this example, we will compute the condition number of a matrix for different values of P with the help of torch.linalg.cond method.

Python3




# import the required library
import torch
  
# define a tensor (matrix)
M = torch.tensor([[-0.1345, -0.7437, 1.2377],
                  [0.9337, 1.6473, 0.4346],
                  [-1.6345, 0.9344, -0.2456]])
  
# display input tensor
print("\n Input Matrix M: \n", M)
  
print("When P is fro = ", torch.linalg.cond(M, p='fro'))
print("When P is nuc =",  torch.linalg.cond(M, p='nuc'))
print("When P is inf =", torch.linalg.cond(M, p=float('inf')))
print("When P is -inf =", torch.linalg.cond(M, p=float('-inf')))
print("When P is 1 =", torch.linalg.cond(M, p=1))
print("When P is -1 =", torch.linalg.cond(M, p=-1))
print("When P is 2 =", torch.linalg.cond(M, p=2))
print("When P is -2 =", torch.linalg.cond(M, p=-2))


Output:

torch.linalg.cond() in Python PyTorch

 

Example 3

In this example, we will compute the condition number of a batch of matrices with the help of torch.linalg.cond method.

Python3




# import the required library
import torch
  
# define a tensor (matrix)
M = torch.tensor([[[-0.1345, -0.7437, 1.2377],
                   [0.9337, 1.6473, 0.4346],
                   [-1.6345, 0.9344, -0.2456]],
                  [[1.3343, -1.3456, 0.7373],
                   [1.4334, 0.2473, 1.1333],
                   [-1.5341, 1.5348, -1.4567]]])
  
# display input tensor
print(" Input Matrix M: \n", M)
  
# compute the condition number
Output = torch.linalg.cond(M)
  
# Display result
print("\n Condition Number: ", Output)


Output:

torch.linalg.cond() in Python PyTorch

 

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32246 POSTS0 COMMENTS
Milvus
80 POSTS0 COMMENTS
Nango Kala
6615 POSTS0 COMMENTS
Nicole Veronica
11787 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11835 POSTS0 COMMENTS
Shaida Kate Naidoo
6731 POSTS0 COMMENTS
Ted Musemwa
7011 POSTS0 COMMENTS
Thapelo Manthata
6685 POSTS0 COMMENTS
Umr Jansen
6699 POSTS0 COMMENTS