Thursday, September 4, 2025
HomeLanguagesPython – Pytorch randn() method

Python – Pytorch randn() method

PyTorch torch.randn() returns a tensor defined by the variable argument size (sequence of integers defining the shape of the output tensor), containing random numbers from standard normal distribution.

Syntax: torch.randn(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)

Parameters:

  • size: sequence of integers defining the size of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
  • out: (optional) output tensor.
  • dtype: (optional) data type of output tensor.
  • layout: (optional) the desired layout of returned Tensor. Default value is torch.strided.
  • device: (optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
  • requires_grad: (optional) if set to true, autograd records operation on the output tensor.

Return: tensor filled with values from standard normal distribution.

Let’s see this concept with the help of few examples:

Example 1:

Python




# import pytorch library
import torch
 
# create a tensor of size 2 x 4
input_var = torch.randn(2,4)
 
print (input_var)


 
 

 Output:

 

tensor([[-1.4313, -0.3831, -0.8356, -1.5555],
        [-1.2749, -1.1872, -0.4983,  0.1029]])

 

This returns a tensor of size 2 × 4, filled with values from standard normal distribution, that is mean is 0 and variance is 1.

 

Example 2:

 

Python3




# import Pytorch library
import torch
 
# create a 3-dimensional tensor
# of 4 x 5
input_var =  torch.randn(3, 4, 5,
                     requires_grad = True)
print(input_var)


 
 

 Output:

 

tensor([[[-0.1097,  1.6845,  0.9375, -1.0515,  0.5767], 
        [ 0.1924, -0.7736, -0.7102, -0.2654,  0.3118], 
        [-0.5314,  0.1924, -1.1629,  0.2360,  0.8605], 
        [-0.8036, -0.0695, -0.6062,  1.4872,  0.5455]],
       [[ 1.5699, -0.7190,  1.0925,  0.8463, -0.1906], 
        [-0.0763, -0.6819, -1.0517, -0.5087, -1.4451], 
        [-2.0127,  1.0061,  0.5723, -0.1336, -0.3821], 
        [ 0.0868,  1.1556,  0.3842, -0.4168, -1.4604]],
       [[ 0.1368, -1.6240, -0.1875, -0.5964,  0.9352], 
        [ 0.4429,  0.2843, -1.2151,  1.3456, -0.4539], 
        [-0.4528,  1.9981, -1.2007,  0.0071, -0.0239], 
        [-0.1003,  0.7938, -0.0977, -1.4097,  0.1679]]], requires_grad=True)   
 

 

This returns a tensor of size 3 × 4 × 5, filled with random numbers, also recording the gradient values, when performed. 
Example 3: 

 

Python3




# import Pytorch library
import torch
 
# error occur
input_var =  torch.randn(3.0, 4.0, 5.0,
                     requires_grad = True)
print(input_var)


 
 

Output:

 

TypeError                                 Traceback (most recent call last) 
in 
     1 # import Pytorch library 
     2 import torch 
—-> 3 input =  torch.randn(3.0, 4.0, 5.0,requires_grad=True) 
     4 print( input )
TypeError: randn() received an invalid combination of arguments – got (float, float, float, requires_grad=bool), but expected one of: 
* (tuple of ints size, *, tuple of names , torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 
* (tuple of ints size, *, torch.Generator generator, tuple of names , torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 
* (tuple of ints size, *, torch.Generator generator, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 
* (tuple of ints size, *, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad)
 

 

size parameter cannot take floating-point numbers so the error will generate.

 

RELATED ARTICLES

Most Popular

Dominic
32261 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6626 POSTS0 COMMENTS
Nicole Veronica
11795 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11855 POSTS0 COMMENTS
Shaida Kate Naidoo
6747 POSTS0 COMMENTS
Ted Musemwa
7023 POSTS0 COMMENTS
Thapelo Manthata
6695 POSTS0 COMMENTS
Umr Jansen
6714 POSTS0 COMMENTS