PyTorch torch.clamp()
method clamps all the input elements into the range [ min, max ] and return a resulting tensor.
Syntax:
torch.clamp(inp, min, max, out=None)
Arguments
- inp: This is input tensor.
- min: This is a number and specifies the lower-bound of the range to which input to be clamped.
- max: This is a number and specifies the upper-bound of the range to which input to be clamped.
- out: The output tensor.
Return: It returns a Tensor.
Example 1:
# Importing the PyTorch library import torch # A constant tensor of size n a = torch.randn( 6 ) print (a) # Applying the clamp function and # storing the result in 'out' out = torch.clamp(a, min = 0.5 , max = 0.9 ) print (out) |
Output:
-0.9214 -0.1268 1.1570 -0.2753 -0.0746 0.7957 [torch.FloatTensor of size 6] 0.5000 0.5000 0.9000 0.5000 0.5000 0.7957 [torch.FloatTensor of size 6]
Example 2:
# Importing the PyTorch library import torch # A constant tensor of size n a = torch.FloatTensor([ 1 , 4 , 6 , 8 , 10 , 14 ]) print (a) # Applying the clamp function and # storing the result in 'out' out = torch.clamp(a, min = 5 , max = 10 ) print (out) |
Output:
1 4 6 8 10 14 [torch.FloatTensor of size 6] 5 5 6 8 10 10 [torch.FloatTensor of size 6]?
<!–
–>
Please Login to comment…