Tuesday, January 7, 2025
Google search engine
HomeLanguagesPython Program to check Involutory Matrix

Python Program to check Involutory Matrix

Given a matrix and the task is to check matrix is an involutory matrix or not. 
Involutory Matrix: A matrix is said to be an involutory matrix if the matrix multiplies by itself and returns the identity matrix. The involutory matrix is the matrix that is its own inverse. The matrix A is said to be an involutory matrix if A * A = I. Where I is the identity matrix. 
 

Involutory-Matrix

Examples: 

Input : mat[N][N] = {{1, 0, 0},
                     {0, -1, 0},
                     {0, 0, -1}}
Output : Involutory Matrix

Input : mat[N][N] = {{1, 0, 0},
                     {0, 1, 0},
                     {0, 0, 1}} 
Output : Involutory Matrix

Python3




# Program to implement involutory matrix.
N = 3;
 
# Function for matrix multiplication.
def multiply(mat, res):
 
    for i in range(N):
        for j in range(N):
            res[i][j] = 0;
            for k in range(N):
                res[i][j] += mat[i][k] * mat[k][j];
    return res;
 
# Function to check involutory matrix.
def InvolutoryMatrix(mat):
 
    res=[[0 for i in range(N)]
            for j in range(N)];
 
    # multiply function call.
    res = multiply(mat, res);
 
    for i in range(N):
        for j in range(N):
            if (i == j and res[i][j] != 1):
                return False;
            if (i != j and res[i][j] != 0):
                return False;
    return True;
 
# Driver Code
mat = [[1, 0, 0], [0, -1, 0], [0, 0, -1]];
 
# Function call. If function
# return true then if part
# will execute otherwise
# else part will execute.
if (InvolutoryMatrix(mat)):
    print("Involutory Matrix");
else:
    print("Not Involutory Matrix");
 
# This code is contributed by mits


Output

Involutory Matrix

Time Complexity: O(N3)
Auxiliary Space: O(N2)

Please refer complete article on Program to check Involutory Matrix for more details!

Using Numpy:

Note: Before running the code please install the Numpy library using the command below

pip install numpy

Another approach  is to use the numpy library to check if the matrix is involutory. This can be done by using the numpy.allclose function to compare the matrix with its inverse.

For example, the following code snippet checks if a matrix is involutory:

Python3




import numpy as np
 
def is_involutory(matrix):
    # Calculate the inverse of the matrix using the numpy linalg module
    inverse = np.linalg.inv(matrix)
     
    # Check if the matrix is equal to its inverse using numpy.allclose
    return np.allclose(matrix, inverse)
 
# Example usage
matrix = np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]])
print(is_involutory(matrix)) # prints True
#This code is contributed by Edula Vinay Kumar Reddy


Output: True

This approach has the advantage of being more concise and easier to read, and it also takes advantage of the optimized linear algebra routines provided by numpy. Space complexity is O(N^2) and the time complexity of this approach will depend on the complexity of the matrix inverse calculation, which is generally O(N^3) for dense matrices.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments