Thursday, September 4, 2025
HomeLanguagesPython – Power Log-Normal Distribution in Statistics

Python – Power Log-Normal Distribution in Statistics

scipy.stats.powerlognorm() is a power log-normal continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution.

Parameters :

q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : power log-normal continuous random variable

Code #1 : Creating power log-normal continuous random variable




# importing library
  
from scipy.stats import powerlognorm 
    
numargs = powerlognorm .numargs 
a, b = 4.32, 3.18
rv = powerlognorm (a, b) 
    
print ("RV : \n", rv) 


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D8295B48

Code #2 : power log-normal continuous variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = powerlognorm.rvs(a, b) 
print ("Random Variates : \n", R) 
  
# PDF 
R = powerlognorm.pdf(a, b, quantile) 
print ("\nProbability Distribution : \n", R) 


Output :

Random Variates : 
 0.03729334807608579

Probability Distribution : 
 [0.00000000e+000 8.14360522e-126 7.81567440e-037 1.63561014e-018
 8.34970138e-012 1.30638655e-008 7.72704791e-007 9.42026992e-006
 4.87663742e-005 1.52259891e-004]
 

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.pdf(distribution)) 


Output :

Distribution : 
 [0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2.        ]
 

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
     
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = powerlognorm .pdf(x, 1, 3, 5
y2 = powerlognorm .pdf(x, 1, 4, 4
plt.plot(x, y1, "*", x, y2, "r--"


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32263 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6626 POSTS0 COMMENTS
Nicole Veronica
11799 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11857 POSTS0 COMMENTS
Shaida Kate Naidoo
6749 POSTS0 COMMENTS
Ted Musemwa
7025 POSTS0 COMMENTS
Thapelo Manthata
6696 POSTS0 COMMENTS
Umr Jansen
6716 POSTS0 COMMENTS