Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas TimedeltaIndex.memory_usage() function return the memory usage of the given TimedeltaIndex object. It returns the number of bytes required to store the object.
Syntax : TimedeltaIndex.memory_usage(deep=False) Parameters : deep : Introspect the data deeply, interrogate object dtypes for system-level memory consumption Return : bytes used
Example #1: Use TimedeltaIndex.memory_usage() function to find the memory usage of the given TimedeltaIndex object.Â
Python3
# importing pandas as pdimport pandas as pdÂ
# Create the TimedeltaIndex objecttidx = pd.TimedeltaIndex(data =['3 days 06:05:01.000030', '1 days 06:05:01.000030',                                 '3 days 06:05:01.000030', '1 days 02:00:00',                                                 '21 days 06:15:01.000030'])Â
# Print the TimedeltaIndex objectprint(tidx) |
Output : 
Python3
# find memory usage for tidxtidx.memory_usage(deep = True) |
Output : 
Python3
# importing pandas as pdimport pandas as pdÂ
# Create the TimedeltaIndex objecttidx = pd.TimedeltaIndex(data =['06:05:01.000030', '3 days 06:05:01.000030',                                '22 day 2 min 3us 10ns', '+23:59:59.999999',                              '13 days 06:05:01.000030', '+12:19:59.999999'])Â
# Print the TimedeltaIndex objectprint(tidx) |
Output : 
Python3
# find memory usage for tidxtidx.memory_usage(deep = True) |
Output : 
