Wednesday, September 24, 2025
HomeLanguagesPython | Pandas Series.tz_convert

Python | Pandas Series.tz_convert

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.

Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index.

Pandas Series.tz_convert() function works with time zone aware indexes. It convert tz-aware axis to target time zone.

Syntax: Series.tz_convert(tz, axis=0, level=None, copy=True)

Parameter :
tz : string or pytz.timezone object
axis : the axis to convert
level : int, str, default None
copy : Also make a copy of the underlying data.

Returns : Series

Example #1: Use Series.tz_convert() function to convert the time zone aware index of the given Series to the target time zone.




# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series(['New York', 'Chicago', 'Toronto', 'Lisbon', 'Rio', 'Moscow'])
  
# Create the Datetime Index
didx = pd.DatetimeIndex(start ='2014-08-01 10:00', freq ='W'
                           periods = 6, tz = 'Asia/Calcutta'
  
# set the index
sr.index = didx
  
# Print the series
print(sr)


Output :

Now we will use Series.tz_convert() function to convert the given time zone index to time zone aware index to the target time zone which is ‘US/Central’.




# convert to 'US / Central'
sr.tz_convert('US/Central')


Output :

As we can see in the output, the Series.tz_convert() function has converted the time zone of the index of the given series object to the desired time zone.
 
Example #2: Use Series.tz_convert() function to convert the time zone aware index of the given Series to the target time zone.




# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series([19.5, 16.8, 22.78, 20.124, 18.1002])
  
# Create the Datetime Index
didx = pd.DatetimeIndex(start ='2014-08-01 10:00', freq ='W'
                     periods = 5, tz = 'Asia/Calcutta'
  
# set the index
sr.index = didx
  
# Print the series
print(sr)


Output :

Now we will use Series.tz_convert() function to convert the given time zone index to time zone aware index to the target time zone which is ‘Europe/Berlin’




# convert to 'Europe / Berlin'
sr.tz_convert('Europe/Berlin')


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32319 POSTS0 COMMENTS
Milvus
84 POSTS0 COMMENTS
Nango Kala
6680 POSTS0 COMMENTS
Nicole Veronica
11852 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11910 POSTS0 COMMENTS
Shaida Kate Naidoo
6794 POSTS0 COMMENTS
Ted Musemwa
7070 POSTS0 COMMENTS
Thapelo Manthata
6752 POSTS0 COMMENTS
Umr Jansen
6761 POSTS0 COMMENTS