Thursday, December 26, 2024
Google search engine
HomeLanguagesPython | Pandas Series.str.match()

Python | Pandas Series.str.match()

Series.str can be used to access the values of the series as strings and apply several methods to it. Pandas Series.str.match() function is used to determine if each string in the underlying data of the given series object matches a regular expression.

Syntax: Series.str.match(pat, case=True, flags=0, na=nan)

Parameter :
pat : Regular expression pattern with capturing groups.
case : If True, case sensitive
flags : A re module flag, for example re.IGNORECASE.
na : default NaN, fill value for missing values

Returns : Series/array of boolean values

Example #1: Use Series.str.match() function to match the passed regular expressions with the string in the underlying data of the given series object.




# importing pandas as pd
import pandas as pd
  
# importing re for regular expressions
import re
  
# Creating the Series
sr = pd.Series(['New_York', 'Lisbon', 'Tokyo', 'Paris', 'Munich'])
  
# Creating the index
idx = ['City 1', 'City 2', 'City 3', 'City 4', 'City 5']
  
# set the index
sr.index = idx
  
# Print the series
print(sr)


Output :

Now we will use Series.str.match() function to match the passed regular expressions with the string in the underlying data of the given series object.




# match either 'Tokyo' or 'Paris'
result = sr.str.match(pat = '(Tokyo)|(Paris)')
  
# print the result
print(result)


Output :

As we can see in the output, the Series.str.match() function has returned a series of boolean values. It contains True for those values which successfully matches else it contains False.

Example #2 : Use Series.str.match() function to match the passed regular expressions with the string in the underlying data of the given series object.




# importing pandas as pd
import pandas as pd
  
# importing re for regular expressions
import re
  
# Creating the Series
sr = pd.Series(['Mike', 'Alessa', 'Nick', 'Kim', 'Britney'])
  
# Creating the index
idx = ['Name 1', 'Name 2', 'Name 3', 'Name 4', 'Name 5']
  
# set the index
sr.index = idx
  
# Print the series
print(sr)


Output :

Now we will use Series.str.match() function to match the passed regular expressions with the string in the underlying data of the given series object.




# match groups having any capital letter
# followed by 'i' and any other character
result = sr.str.match(pat = '([A-Z]i.)')
  
# print the result
print(result)


Output :

As we can see in the output, the Series.str.match() function has returned a series of boolean values. It contains True for those values which successfully matches else it contains False.

RELATED ARTICLES

Most Popular

Recent Comments