Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index.
Pandas Series.set_axis() function is used to assign desired index to given axis. Indexes for column or row labels can be changed by assigning a list-like or Index.
Syntax: Series.set_axis(labels, axis=0, inplace=None)
Parameter :
labels : The values for the new index.
axis : The axis to update. The value 0 identifies the rows, and 1 identifies the columns.
inplace : Whether to return a new %(klass)s instance.
Returns : renamed : series
Example #1: Use Series.set_axis() function to reset the axis of the given Series object.
Python3
# importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series([ 'New York' , 'Chicago' , 'Toronto' , 'Lisbon' , 'Rio' , 'Moscow' ]) # Create the Index index_ = [ 'City 1' , 'City 2' , 'City 3' , 'City 4' , 'City 5' , 'City 6' ] # set the index sr.index = index_ # Print the series print (sr) |
Output :
Now we will use Series.set_axis() function to reset the index of the given series object
Python3
# Create the Index didx = pd.DatetimeIndex(start = '2014-08-01 10:00' , freq = 'W' , periods = 6 , tz = 'Europe/Berlin' ) # reset the index sr.set_axis(didx, inplace = True ) # Print the series print (sr) |
Output :
As we can see in the output, the Series.set_axis() function has successfully reset the index of the given Series object.
Example #2: Use Series.set_axis() function to reset the axis of the given Series object.
Python3
# importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series([ 100 , 25 , 32 , 118 , 24 , 65 ]) # Print the series print (sr) |
Output :
Now we will use Series.set_axis() function to reset the index of the given series object
Python3
# Assign the new index sr.set_axis([ 'A' , 'B' , 'C' , 'D' , 'E' , 'F' ], inplace = True ) # print the series print (sr) |
Output :
As we can see in the output, the Series.set_axis() function has successfully reset the index of the given Series object.