Thursday, September 25, 2025
HomeLanguagesPython | Pandas Series.sem()

Python | Pandas Series.sem()

Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index.

Pandas Series.sem() function return unbiased standard error of the mean over requested axis. The result is normalized by N-1 by default. This can be changed using the ddof argument.

Syntax: Series.sem(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)

Parameter :
axis : {index (0)}
skipna : Exclude NA/null values.
level : If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar.
ddof : Delta Degrees of Freedom.
numeric_only : Include only float, int, boolean columns.

Returns : scalar or Series (if level specified)

Example #1 : Use Series.sem() function to find the standard error of the mean of the underlying data in the given Series object.




# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series([100, 25, 32, 118, 24, 65])
  
# Print the series
print(sr)


Output :

Now we will use Series.sem() function to find the standard error of the mean of the underlying data.




# find standard error of the mean
sr.sem()


Output :


As we can see in the output, Series.sem() function has successfully calculated the standard error the mean of the underlying data in the given Series object.
 
Example #2 : Use Series.sem() function to find the standard error of the mean of the underlying data in the given Series object. The given Series object also contains some missing values.




# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series([19.5, 16.8, None, 22.78, None, 20.124, None, 18.1002, None])
  
# Print the series
print(sr)


Output :

Now we will use Series.sem() function to find the standard error of the mean of the underlying data.




# find standard error of the mean
# Skip all the missing values
sr.sem(skipna = True)


Output :

As we can see in the output, Series.sem() function has successfully calculated the standard error the mean of the underlying data in the given Series object.

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32319 POSTS0 COMMENTS
Milvus
84 POSTS0 COMMENTS
Nango Kala
6680 POSTS0 COMMENTS
Nicole Veronica
11854 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11910 POSTS0 COMMENTS
Shaida Kate Naidoo
6794 POSTS0 COMMENTS
Ted Musemwa
7070 POSTS0 COMMENTS
Thapelo Manthata
6753 POSTS0 COMMENTS
Umr Jansen
6761 POSTS0 COMMENTS