Friday, September 5, 2025
HomeLanguagesPython | Pandas Series.reindex_like()

Python | Pandas Series.reindex_like()

Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer and label-based indexing and provides a host of methods for performing operations involving the index.

Pandas Series.reindex_like() function return an object with matching indices as other object. It conform the object to the same index on all axes.

Syntax: Series.reindex_like(other, method=None, copy=True, limit=None, tolerance=None)

Parameter :
other : Its row and column indices are used to define the new indices of this object.
method : Method to use for filling holes in reindexed DataFrame.
copy : Return a new object, even if the passed indexes are the same.
limit : Maximum number of consecutive labels to fill for inexact matches.
tolerance : Maximum distance between original and new labels for inexact matches.

Returns : Series or DataFrame

Example #1: Use Series.reindex_like() function to reindex the given series object based on the other object.




# importing pandas as pd
import pandas as pd
  
# Creating the first Series
sr1 = pd.Series([10, 25, 3, 11, 24, 6])
  
# Create the Index
index_ = ['Coca Cola', 'Sprite', 'Coke', 'Fanta', 'Dew', 'ThumbsUp']
  
# set the index
sr1.index = index_
  
# Print the series
print(sr1)
  
# Creating the second Series
sr2 = pd.Series([10, 25, 3, 11, 24, 6, 25, 45])
  
# Create the Index
index_ = ['Coca Cola', 'Sprite', 'Coke', 'Fanta',
            'Dew', 'ThumbsUp', 'Mirinda', 'Appy']
  
# set the index
sr2.index = index_
  
# Print the series
print(sr2)


Output :

Now we will use Series.reindex_like() function to reindex the sr2 series object based on sr1.




# reindex sr2 using sr1
result = sr2.reindex_like(sr1)
  
# Print the result
print(result)


Output :


As we can see in the output, the Series.reindex_like() function has successfully reindexed sr2 object using sr1. Notice for the extra labels has been dropped.

Example #2 : Use Series.reindex_like() function to reindex the given series object based on the other object.




# importing pandas as pd
import pandas as pd
  
# Creating the first Series
sr1 = pd.Series(['New York', 'Chicago', 'Toronto', 'Lisbon', 'Rio'])
  
# Create the Index
index_ = ['City 1', 'City 2', 'City 3', 'City 4', 'City 5'] 
  
# set the index
sr1.index = index_
  
# Print the series
print(sr1)
  
# Creating the second Series
sr2 = pd.Series(['New York', 'Toronto', 'Lisbon', 'Rio'])
  
# Create the Index
index_ = ['City 1', 'City 3', 'City 4', 'City 5'] 
  
# set the index
sr2.index = index_
  
# Print the series
print(sr2)


Output :

Now we will use Series.reindex_like() function to reindex the sr2 series object based on sr1.




# reindex sr2 using sr1
result = sr2.reindex_like(sr1)
  
# Print the result
print(result)


Output :

As we can see in the output, the Series.reindex_like() function has successfully reindexed sr2 object using sr1. Notice for the newer additions NaN values has been used.

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32265 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6634 POSTS0 COMMENTS
Nicole Veronica
11801 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11863 POSTS0 COMMENTS
Shaida Kate Naidoo
6752 POSTS0 COMMENTS
Ted Musemwa
7025 POSTS0 COMMENTS
Thapelo Manthata
6703 POSTS0 COMMENTS
Umr Jansen
6718 POSTS0 COMMENTS