Series.dt
can be used to access the values of the series as datetimelike and return several properties. Pandas Series.dt.to_pydatetime()
function return the data as an array of native Python datetime objects. Timezone information is retained if present.
Syntax: Series.dt.to_pydatetime()
Parameter : None
Returns : numpy.ndarray
Example #1: Use Series.dt.to_pydatetime()
function to return the given series object as an array of native python datetime object.
# importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series([ '2012-12-31' , '2019-1-1 12:30' , '2008-02-2 10:30' , '2010-1-1 09:25' , '2019-12-31 00:00' ]) # Creating the index idx = [ 'Day 1' , 'Day 2' , 'Day 3' , 'Day 4' , 'Day 5' ] # set the index sr.index = idx # Convert the underlying data to datetime sr = pd.to_datetime(sr) # Print the series print (sr) |
Output :
Now we will use Series.dt.to_pydatetime()
function to return the data as an array of native Python datetime objects.
# return the series data as a # native python datetime data result = sr.dt.to_pydatetime() # print the result print (result) |
Output :
As we can see in the output, the Series.dt.to_pydatetime()
function has successfully returned the underlying data of the given series object as an array of native python datetime data.
Example #2 : Use Series.dt.to_pydatetime()
function to return the given series object as an array of native python datetime object.
# importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series(pd.date_range( '2012-12-31 00:00' , periods = 5 , freq = 'D' , tz = 'US / Central' )) # Creating the index idx = [ 'Day 1' , 'Day 2' , 'Day 3' , 'Day 4' , 'Day 5' ] # set the index sr.index = idx # Print the series print (sr) |
Output :
Now we will use Series.dt.to_pydatetime()
function to return the data as an array of native Python datetime objects.
# return the series data as a # native python datetime data result = sr.dt.to_pydatetime() # print the result print (result) |
Output :
As we can see in the output, the Series.dt.to_pydatetime()
function has successfully returned the underlying data of the given series object as an array of native python datetime data.