Saturday, September 6, 2025
HomeLanguagesPython | Pandas Series/Dataframe.any()

Python | Pandas Series/Dataframe.any()

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.

Pandas any() method is applicable both on Series and Dataframe. It checks whether any value in the caller object (Dataframe or series) is not 0 and returns True for that. If all values are 0, it will return False.

Syntax: DataFrame.any(axis=0, bool_only=None, skipna=True, level=None, **kwargs)

Parameters:
axis: 0 or ‘index’ to apply method by rows and 1 or ‘columns’ to apply by columns.
bool_only: Checks for bool only series in Data frame, if none found, it will use only boolean values. This parameter is not for series since there is only one column.
skipna: Boolean value, If False, returns True for whole NaN column/row
level: int or str, specifies level in case of multilevel

Return type: Boolean series

Example #1: Index wise implementation

In this example, a sample data frame is created by passing dictionary to Pandas DataFrame() method. Null values are also passed to some indexes using Numpy np.nan to check behaviour with null values. Since in this example, the method is implemented on index, the axis parameter is kept 0 (that stands for rows).




# importing pandas module 
import pandas as pd 
  
# importing numpy module
import numpy as np
  
# creating dictionary
dic = {'A': [1, 2, 3, 4, 0, np.nan, 3],
       'B': [3, 1, 4, 5, 0, np.nan, 5],
       'C': [0, 0, 0, 0, 0, 0, 0]}
  
# making dataframe using dictionary
data = pd.DataFrame(dic)
  
# calling data.any column wise
result = data.any(axis = 0)
  
# displaying result
result


Output:
As shown in output, since last column is having all values equal to zero, Hence False was returned only for that column.

 
Example #2: Column wise Implementation

In this example, a sample data frame is created by passing dictionary to Pandas DataFrame() method just like in above example. But instead of passing 0 to axis parameter, 1 is passed to implement for each value in every column.




# importing pandas module 
import pandas as pd 
  
# importing numpy module
import numpy as np
  
# creating dictionary
dic = {'A': [1, 2, 3, 4, 0, np.nan, 3],
       'B': [3, 1, 4, 5, 0, np.nan, 5],
       'C': [0, 0, 0, 0, 0, 0, 0]}
  
# making dataframe using dictionary
data = pd.DataFrame(dic)
  
# calling data.any column wise
result = data.any(axis = 1)
  
# displaying result
result


Output:
As shown in the output, False was returned for only rows where all values were 0 or NaN and 0.

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32270 POSTS0 COMMENTS
Milvus
82 POSTS0 COMMENTS
Nango Kala
6639 POSTS0 COMMENTS
Nicole Veronica
11803 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11869 POSTS0 COMMENTS
Shaida Kate Naidoo
6752 POSTS0 COMMENTS
Ted Musemwa
7029 POSTS0 COMMENTS
Thapelo Manthata
6705 POSTS0 COMMENTS
Umr Jansen
6721 POSTS0 COMMENTS