Thursday, November 20, 2025
HomeLanguagesPython | Pandas Series.as_blocks()

Python | Pandas Series.as_blocks()

Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index.

Pandas Series.as_blocks() function is used to convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.

Syntax: Series.as_blocks(copy=True)

Parameter :
copy : boolean, default True

Returns : values : a dict of dtype -> Constructor Types

Example #1: Use Series.as_blocks() function to return the given series object as a dictionary.




# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series(['New York', 'Chicago', 'Toronto', 'Lisbon', 'Rio'])
  
# Create the Index
index_ = ['City 1', 'City 2', 'City 3', 'City 4', 'City 5'] 
  
# set the index
sr.index = index_
  
# Print the series
print(sr)


Output :

City 1    New York
City 2     Chicago
City 3     Toronto
City 4      Lisbon
City 5         Rio
dtype: object

Now we will use Series.as_blocks() function to return the given series object as a dictionary.




# return a dictionary
result = sr.as_blocks()
  
# Print the result
print(result)


Output :

{'object': City 1    New York
City 2     Chicago
City 3     Toronto
City 4      Lisbon
City 5         Rio
dtype: object}

As we can see in the output, the Series.as_blocks() function has successfully returned the given series object as a dictionary.
 
Example #2 : Use Series.as_blocks() function to return the given series object as a dictionary.




# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series([11, 21, 8, 18, 65, 18, 32, 10, 5, 32, None])
  
# Create the Index
# apply yearly frequency
index_ = pd.date_range('2010-10-09 08:45', periods = 11, freq ='Y')
  
# set the index
sr.index = index_
  
# Print the series
print(sr)


Output :

2010-12-31 08:45:00    11.0
2011-12-31 08:45:00    21.0
2012-12-31 08:45:00     8.0
2013-12-31 08:45:00    18.0
2014-12-31 08:45:00    65.0
2015-12-31 08:45:00    18.0
2016-12-31 08:45:00    32.0
2017-12-31 08:45:00    10.0
2018-12-31 08:45:00     5.0
2019-12-31 08:45:00    32.0
2020-12-31 08:45:00     NaN
Freq: A-DEC, dtype: float64

Now we will use Series.as_blocks() function to return the given series object as a dictionary.




# return a dictionary
result = sr.as_blocks()
  
# Print the result
print(result)


Output :

{'float64': 2010-12-31 08:45:00    11.0
2011-12-31 08:45:00    21.0
2012-12-31 08:45:00     8.0
2013-12-31 08:45:00    18.0
2014-12-31 08:45:00    65.0
2015-12-31 08:45:00    18.0
2016-12-31 08:45:00    32.0
2017-12-31 08:45:00    10.0
2018-12-31 08:45:00     5.0
2019-12-31 08:45:00    32.0
2020-12-31 08:45:00     NaN
Freq: A-DEC, dtype: float64}

As we can see in the output, the Series.as_blocks() function has successfully returned the given series object as a dictionary.

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32405 POSTS0 COMMENTS
Milvus
97 POSTS0 COMMENTS
Nango Kala
6780 POSTS0 COMMENTS
Nicole Veronica
11927 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11995 POSTS0 COMMENTS
Shaida Kate Naidoo
6906 POSTS0 COMMENTS
Ted Musemwa
7164 POSTS0 COMMENTS
Thapelo Manthata
6862 POSTS0 COMMENTS
Umr Jansen
6847 POSTS0 COMMENTS