Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index.
Pandas Series.argmax()
function returns the row label of the maximum value in the given series object.
Syntax: Series.argmax(axis=0, skipna=True, *args, **kwargs)
Parameter :
skipna : Exclude NA/null values. If the entire Series is NA, the result will be NA.
axis : For compatibility with DataFrame.idxmax. Redundant for application on Series.
*args, **kwargs : Additional keywords have no effect but might be accepted for compatibility with NumPy.Returns : idxmax : Index of maximum of values.
Example #1: Use Series.argmax()
function to return the row label of the maximum value in the given series object
# importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series([ 34 , 5 , 13 , 32 , 4 , 15 ]) # Create the Index index_ = [ 'Coca Cola' , 'Sprite' , 'Coke' , 'Fanta' , 'Dew' , 'ThumbsUp' ] # set the index sr.index = index_ # Print the series print (sr) |
Output :
Coca Cola 34 Sprite 5 Coke 13 Fanta 32 Dew 4 ThumbsUp 15 dtype: int64
Now we will use Series.argmax()
function to return the row label of the maximum value in the given series object.
# return the row label for # the maximum value result = sr.argmax() # Print the result print (result) |
Output :
Coca Cola
As we can see in the output, the Series.argmax()
function has successfully returned the row label of the maximum value in the given series object.
Example #2 : Use Series.argmax()
function to return the row label of the maximum value in the given series object.
# importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series([ 11 , 21 , 8 , 18 , 65 , 18 , 32 , 10 , 5 , 32 , None ]) # Create the Index # apply yearly frequency index_ = pd.date_range( '2010-10-09 08:45' , periods = 11 , freq = 'Y' ) # set the index sr.index = index_ # Print the series print (sr) |
Output :
2010-12-31 08:45:00 11.0 2011-12-31 08:45:00 21.0 2012-12-31 08:45:00 8.0 2013-12-31 08:45:00 18.0 2014-12-31 08:45:00 65.0 2015-12-31 08:45:00 18.0 2016-12-31 08:45:00 32.0 2017-12-31 08:45:00 10.0 2018-12-31 08:45:00 5.0 2019-12-31 08:45:00 32.0 2020-12-31 08:45:00 NaN Freq: A-DEC, dtype: float64
Now we will use Series.argmax()
function to return the row label of the maximum value in the given series object.
# return the row label for # the maximum value result = sr.argmax() # Print the result print (result) |
Output :
2014-12-31 08:45:00
As we can see in the output, the Series.argmax()
function has successfully returned the row label of the maximum value in the given series object.