Friday, October 17, 2025
HomeLanguagesPython | Pandas Series.aggregate()

Python | Pandas Series.aggregate()

Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index.

Pandas Series.aggregate() function aggregate using one or more operations over the specified axis in the given series object.

Syntax: Series.aggregate(func, axis=0, *args, **kwargs)

Parameter :
func : Function to use for aggregating the data.
axis : Parameter needed for compatibility with DataFrame.
*args : Positional arguments to pass to func.
**kwargs : Keyword arguments to pass to func.

Returns : DataFrame, Series or scalar

Example #1: Use Series.aggregate() function to perform aggregation on the underlying data of the given series object.




# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series([34, 5, 13, 32, 4, 15])
  
# Create the Index
index_ = ['Coca Cola', 'Sprite', 'Coke', 'Fanta', 'Dew', 'ThumbsUp']
  
# set the index
sr.index = index_
  
# Print the series
print(sr)


Output :

Coca Cola    34
Sprite        5
Coke         13
Fanta        32
Dew           4
ThumbsUp     15
dtype: int64

Now we will use Series.aggregate() function to find the sum of all the values in the given series object.




# Find the sum of all values
result = sr.aggregate(func = sum)
  
# Print the result
print(result)


Output :

103

As we can see in the output, the Series.aggregate() function has successfully returned the sum of the underlying data of the given series object.
 
Example #2 : Use Series.aggregate() function to perform aggregation on the underlying data of the given series object.




# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series([51, 10, 24, 18, 1, 84, 12, 10, 5, 24, 0])
  
# Create the Index
# apply yearly frequency
index_ = pd.date_range('2010-10-09 08:45', periods = 11, freq ='Y')
  
# set the index
sr.index = index_
  
# Print the series
print(sr)


Output :

2010-12-31 08:45:00    51
2011-12-31 08:45:00    10
2012-12-31 08:45:00    24
2013-12-31 08:45:00    18
2014-12-31 08:45:00     1
2015-12-31 08:45:00    84
2016-12-31 08:45:00    12
2017-12-31 08:45:00    10
2018-12-31 08:45:00     5
2019-12-31 08:45:00    24
2020-12-31 08:45:00     0
Freq: A-DEC, dtype: int64

Now we will use Series.aggregate() function to find the maximum of all the values in the given series object.




# Find the max of all values
result = sr.aggregate(func = max)
  
# Print the result
print(result)


Output :

84

As we can see in the output, the Series.aggregate() function has successfully returned the maximum of all the values in the given series object.

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS