In Pandas, Panel is a very important container for three-dimensional data. The names for the 3 axes are intended to give some semantic meaning to describing operations involving panel data and, in particular, econometric analysis of panel data.
Panel.cumsum()
function is used to returns a DataFrame or Series of the same size containing the cumulative sum.
Syntax: Panel.cumsum(axis=None, skipna=True, *args, **kwargs)
Parameters:
axis : The index or the name of the axis. 0 is equivalent to None or ‘index’.
skipna : Exclude NA/null values. If an entire row/column is NA, the result will be NA.Returns: Cumsum of DataFrame or Panel
Code #1:
# importing pandas module import pandas as pd import numpy as np df1 = pd.DataFrame({ 'a' : [ 'Geeks' , 'For' , 'neveropen' , 'for' , 'real' ], 'b' : [ 11 , 1.025 , 333 , 114.48 , 1333 ]}) data = { 'item1' :df1, 'item2' :df1} # creating Panel panel = pd.Panel.from_dict(data, orient = 'minor' ) print (panel[ 'b' ]) print ( "\n" , panel[ 'b' ].cumsum(axis = 0 )) |
Output:
Code #2:
# importing pandas module import pandas as pd import numpy as np df1 = pd.DataFrame({ 'a' : [ 'Geeks' , 'For' , 'neveropen' ], 'b' : np.random.randn( 3 )}) data = { 'item1' :df1, 'item2' :df1} # creating Panel panel = pd.Panel.from_dict(data, orient = 'minor' ) print (panel[ 'b' ]) print ( "\n" , panel[ 'b' ].cumsum(axis = 0 )) |
Output: