Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas MultiIndex.levshape
attribute outputs a tuple containing the length of each level in the MultiIndex.
Syntax: MultiIndex.levshape
Example #1: Use MultiIndex.levshape
attribute to find the length of each levels in the MultiIndex.
# importing pandas as pd import pandas as pd # Creating the array array = [[ 1 , 2 , 3 ], [ 'Sharon' , 'Nick' , 'Bailey' ]] # Print the array print (array) |
Output :
Now let’s create the MultiIndex using this array
# Creating the MultiIndex midx = pd.MultiIndex.from_arrays(array, names = ( 'Number' , 'Names' )) # Print the MultiIndex print (midx) |
Output :
Now we will find the length of each levels in the MultiIndex.
# Print the length of each level in MultiIndex midx.levshape |
Output :
As we can see in the output, the length of each levels in the midx MultiIndex is (3, 3).
Example #2: Use MultiIndex.levshape
attribute to find the length of each levels in the given MultiIndex.
# importing pandas as pd import pandas as pd # Creating the array array = [[ 1 , 2 , 3 ], [ 'Sharon' , 'Nick' , 'Bailey' ], [ 'Doctor' , 'Scientist' , 'Physicist' ]] # Print the array print (array) |
Output :
Now let’s create the MultiIndex using this array
# Creating the MultiIndex midx = pd.MultiIndex.from_arrays(array, names = ( 'Ranking' , 'Names' , 'Profession' )) # Print the MultiIndex print (midx) |
Output :
Now we will find the length of each levels in the MultiIndex.
# Print the length of each levels in MultiIndex midx.levshape |
Output :
As we can see in the output, the length of each level in the midx is 3.