Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas Index.notnull()
function detect existing (non-missing) values. This function return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings ” or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values.
Syntax: Index.notnull()
Returns : Boolean array to indicate which entries are not NA.
Example #1: Use Index.notnull()()
function to detect missing values in the given Index.
# importing pandas as pd import pandas as pd # Creating the index idx = pd.Index([ 'Jan' , ' ', ' Mar ', None, ' May ', ' Jun ', ' Jul', 'Aug' , 'Sep' , 'Oct' , 'Nov' , 'Dec' ]) # Print the Index idx |
Output :
Let’s find out all the non-missing values in the Index
# to find the non-missing values. idx.notnull() |
Output :
As we can see in the output, all the non-missing values has been mapped to True
and all the missing values has been mapped to False
. Notice the empty string has been mapped to True
as an empty string is not considered to be a missing value.
Example #2: Use Index.notnull()
function find out all the non-missing values in the Index.
# importing pandas as pd import pandas as pd # Creating the index idx = pd.Index([ 22 , 14 , 8 , 56 , None , 21 , None , 23 ]) # Print the Index idx |
Output :
Let’s find out all the non-missing values in the Index
# to find the non-missing values. idx.notnull() |
Output :
As we can see in the output, all the non-missing values have been mapped to True
and all the missing values have been mapped to False
.