Pandas Index is an immutable ndarray implementing an ordered, sliceable set. It is the basic object which stores the axis labels for all pandas objects.
Pandas Index.is_unique
attribute return True
if the underlying data in the given Index object is unique else it return False
.
Syntax: Index.is_unique
Parameter : None
Returns : boolean
Example #1: Use Index.is_unique
attribute to find out if the underlying data in the given Index object is unique or not.
# importing pandas as pd import pandas as pd # Creating the index idx = pd.Index([ 'Melbourne' , 'Sanghai' , 'Lisbon' , 'Doha' , 'Moscow' ]) # Print the index print (idx) |
Output :
Now we will use Index.is_unique
attribute to find out if the underlying data in the given Index object is unique or not.
# check if the values in the Index # is unique or not. result = idx.is_unique # Print the result print (result) |
Output :
As we can see in the output, the Index.is_unique
attribute has returned True
indicating that the underlying data of the given Index object is unique.
Example #2 : Use Index.is_unique
attribute to find out if the underlying data in the given Index object is unique or not.
# importing pandas as pd import pandas as pd # Creating the index idx = pd.Index([ 900 , 700 , 620 , 388 , 900 ]) # Print the index print (idx) |
Output :
Now we will use Index.is_unique
attribute to find out if the underlying data in the given Index object is unique or not.
# check if the values in the Index # is unique or not. result = idx.is_unique # Print the result print (result) |
Output :
As we can see in the output, the Index.is_unique
attribute has returned False
indicating that the underlying data of the given Index object is not unique.