Saturday, December 28, 2024
Google search engine
HomeLanguagesPython | Pandas.factorize()

Python | Pandas.factorize()

pandas.factorize() method helps to get the numeric representation of an array by identifying distinct values. This method is available as both pandas.factorize() and Series.factorize().

Parameters:
values : 1D sequence.
sort : [bool, Default is False] Sort uniques and shuffle labels.
na_sentinel : [ int, default -1] Missing Values to mark ‘not found’.

Return: Numeric representation of array

Code: Explaining the working of factorize() method




# importing libraries
import numpy as np
import pandas as pd
from pandas.api.types import CategoricalDtype
  
labels, uniques = pd.factorize(['b', 'd', 'd', 'c', 'a', 'c', 'a', 'b'])
  
print("Numeric Representation : \n", labels)
print("Unique Values : \n", uniques)





# sorting the numerics
label1, unique1 = pd.factorize(['b', 'd', 'd', 'c', 'a', 'c', 'a', 'b'], 
                                                           sort = True)
  
print("\n\nNumeric Representation : \n", label1)
print("Unique Values : \n", unique1)





# Missing values indicated
label2, unique2 = pd.factorize(['b', None, 'd', 'c', None, 'a', ], 
                                              na_sentinel = -101)
  
print("\n\nNumeric Representation : \n", label2)
print("Unique Values : \n", unique2)





# When factorizing pandas object; unique will differ 
a = pd.Categorical(['a', 'a', 'c'], categories =['a', 'b', 'c'])
  
label3, unique3 = pd.factorize(a)
  
print("\n\nNumeric Representation : \n", label3)
print("Unique Values : \n", unique3)


Last Updated :
27 Sep, 2018
Like Article
Save Article

<!–

–>

Similar Reads
Related Tutorials
RELATED ARTICLES

Most Popular

Recent Comments