Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas.
Pandas DataFrame.to_records()
function convert DataFrame to a NumPy record array. The index will be included as the first field of the record array if requested.
Syntax: DataFrame.to_records(index=True, convert_datetime64=None, column_dtypes=None, index_dtypes=None)
Parameter :
index : bool, default True
convert_datetime64 : Whether to convert the index to datetime.datetime if it is a DatetimeIndex.
column_dtypes : If a string or type, the data type to store all columns
index_dtypes : If a string or type, the data type to store all index levelsReturns : numpy.recarray
Example #1: Use DataFrame.to_records()
function to convert the given Dataframe to a numpy record array.
# importing pandas as pd import pandas as pd # Creating the DataFrame df = pd.DataFrame({ 'Weight' :[ 45 , 88 , 56 , 15 , 71 ], 'Name' :[ 'Sam' , 'Andrea' , 'Alex' , 'Robin' , 'Kia' ], 'Age' :[ 14 , 25 , 55 , 8 , 21 ]}) # Create the index index_ = pd.date_range( '2010-10-09 08:45' , periods = 5 , freq = 'H' ) # Set the index df.index = index_ # Print the DataFrame print (df) |
Output :
Now we will use DataFrame.to_records()
function to convert the given dataframe to a numpy record array representation.
# convert to numpy record array result = df.to_records() # Print the result print (result) |
Output :
As we can see in the output, the DataFrame.to_records()
function has successfully converted the given dataframe to a numpy record array representation.
Example #2: Use DataFrame.to_records()
function to convert the given Dataframe to a numpy record array.
# importing pandas as pd import pandas as pd # Creating the DataFrame df = pd.DataFrame({ "A" :[ 12 , 4 , 5 , None , 1 ], "B" :[ 7 , 2 , 54 , 3 , None ], "C" :[ 20 , 16 , 11 , 3 , 8 ], "D" :[ 14 , 3 , None , 2 , 6 ]}) # Create the index index_ = [ 'Row_1' , 'Row_2' , 'Row_3' , 'Row_4' , 'Row_5' ] # Set the index df.index = index_ # Print the DataFrame print (df) |
Output :
Now we will use DataFrame.to_records()
function to convert the given dataframe to a numpy record array representation.
# convert to numpy record array result = df.to_records() # Print the result print (result) |
Output :
As we can see in the output, the DataFrame.to_records()
function has successfully converted the given dataframe to a numpy record array representation.