Friday, January 30, 2026
HomeLanguagesPython | Pandas dataframe.std()

Python | Pandas dataframe.std()

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.

Pandas dataframe.std() function return sample standard deviation over requested axis. By default the standard deviations are normalized by N-1. It is a measure that is used to quantify the amount of variation or dispersion of a set of data values. For more information click here

Syntax : DataFrame.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)

Parameters :
axis : {index (0), columns (1)}
skipna : Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
ddof : Delta Degrees of Freedom. The divisor used in calculations is N – ddof, where N represents the number of elements.
numeric_only : Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Return : std : Series or DataFrame (if level specified)

For link to the CSV file used in the code, click here

Example #1: Use std() function to find the standard deviation of data along the index axis.




# importing pandas as pd
import pandas as pd
  
# Creating the dataframe 
df = pd.read_csv("nba.csv")
  
# Print the dataframe
df


Now find the standard deviation of all the numeric columns in the dataframe. We are going to skip the NaN values in the calculation of the standard deviation.




# finding STD
df.std(axis = 0, skipna = True)


Output :

 

Example #2: Use std() function to find the standard deviation over the column axis.

Find the standard deviation along the column axis. We are going to set skipna to be true. If we do not skip the NaN values then it will result in NaN values.




# importing pandas as pd
import pandas as pd
  
# Creating the dataframe 
df = pd.read_csv("nba.csv")
  
# STD over the column axis.
df.std(axis = 1, skipna = True)


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

1 COMMENT

Most Popular

Dominic
32478 POSTS0 COMMENTS
Milvus
122 POSTS0 COMMENTS
Nango Kala
6849 POSTS0 COMMENTS
Nicole Veronica
11978 POSTS0 COMMENTS
Nokonwaba Nkukhwana
12065 POSTS0 COMMENTS
Shaida Kate Naidoo
6987 POSTS0 COMMENTS
Ted Musemwa
7222 POSTS0 COMMENTS
Thapelo Manthata
6934 POSTS0 COMMENTS
Umr Jansen
6917 POSTS0 COMMENTS