Friday, January 24, 2025
Google search engine
HomeLanguagesPython | Pandas dataframe.rpow()

Python | Pandas dataframe.rpow()

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas dataframe.rpow() function is used for finding the exponential power of dataframe and other, element-wise (binary operator rfloordiv). This function is essentially same as doing other ** dataframe but with a support to substitute for missing data in one of the inputs. 

Syntax:DataFrame.rpow(other, axis=’columns’, level=None, fill_value=None) 
Parameters : 
other : Series, DataFrame, or constant 
axis : For Series input, axis to match Series index on 
level : Broadcast across a level, matching Index values on the passed MultiIndex level
fill_value : Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns : result : DataFrame 

Example #1: Use rpow() function to raise each element of a series to a corresponding value in a dataframe over the column axis.

Python3




# importing pandas as pd
import pandas as pd
 
# Creating the dataframe
df = pd.DataFrame({"A":[1, 5, 3, 4, 2],
                   "B":[3, 2, 4, 3, 4],
                   "C":[2, 2, 7, 3, 4],
                   "D":[4, 3, 6, 12, 7]},
                    index =["A1", "A2", "A3", "A4", "A5"])
 
# Print the dataframe
df


Let’s create the series 

Python3




# importing pandas as pd
import pandas as pd
 
# Create the series
sr = pd.Series([12, 25, 64, 18], index =["A", "B", "C", "D"])
 
# Print the series
sr


Lets use the dataframe.rpow() function to raise each element in a series to the power of corresponding element in the dataframe.

Python3




# equivalent to sr ** df
df.rpow(sr, axis = 1)


Output : 

Example #2: Use rpow() function to raise each element in a dataframe to the power of corresponding element in other dataframe

Python3




# importing pandas as pd
import pandas as pd
 
# Creating the first dataframe
df1 = pd.DataFrame({"A":[1, 5, 3, 4, 2],
                    "B":[3, 2, 4, 3, 4],
                    "C":[2, 2, 7, 3, 4],
                    "D":[4, 3, 6, 12, 7]},
                     index =["A1", "A2", "A3", "A4", "A5"])
 
# Creating the second dataframe
df2 = pd.DataFrame({"A":[10, 11, 7, 8, 5],
                    "B":[21, 5, 32, 4, 6],
                    "C":[11, 21, 23, 7, 9],
                    "D":[1, 5, 3, 8, 6]},
                     index =["A1", "A2", "A3", "A4", "A5"])
 
# Print the first dataframe
print(df1)
 
# Print the second dataframe
print(df2)


Lets perform df2 ** df1 

Python3




# raise df2 to the power of df1
df1.rpow(df2)


Output : 

Dominic Wardslaus
Dominic Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments