Thursday, October 2, 2025
HomeLanguagesPython | Pandas dataframe.notnull()

Python | Pandas dataframe.notnull()

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas dataframe.notnull() function detects existing/ non-missing values in the dataframe. The function returns a boolean object having the same size as that of the object on which it is applied, indicating whether each individual value is a na value or not. All of the non-missing values gets mapped to true and missing values get mapped to false. 
Note : Characters such as empty strings ” or numpy.inf are not considered NA values. (unless you set pandas.options.mode.use_inf_as_na = True).
 

Syntax: DataFrame.notnull()
Returns : Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.
 

Example #1: Use notnull() function to find all the non-missing value in the dataframe.
 

Python3




# importing pandas as pd
import pandas as pd
 
# Creating the first dataframe
df = pd.DataFrame({"A":[14, 4, 5, 4, 1],
                   "B":["Sam", "olivia", "terica", "megan", "amanda"],
                   "C":[20 + 5j, 20 + 3j, 7, 3, 8],
                   "D":[14, 3, 6, 2, 6]})
 
# Print the dataframe
df


Let’s use the dataframe.notnull() function to find all the non-missing values in the dataframe. 
 

Python3




# find non-na values
df.notnull()


Output : 
 

As we can see in the output, all the non-missing values in the dataframe has been mapped to true. There is no false value as there is no missing value in the dataframe 
 
Example #2: Use notnull() function to find the non-missing values, when there are missing values in the dataframe.
 

Python3




# importing pandas as pd
import pandas as pd
 
# Creating the dataframe
df = pd.DataFrame({"A":["Sandy", "alex", "brook", "kelly", np.nan],
                   "B":[np.nan, "olivia", "terica", "", "amanda"],
                   "C":[20 + 5j, 20 + 3j, 7, None, 8],
                    "D":[14.8, 3, None, 2.3, 6]})
 
# find non-missing values
df.notnull()


Output : 
 

Notice, the empty string also got mapped to true indicating that it is not a NaN value. 
 

 

RELATED ARTICLES

Most Popular

Dominic
32331 POSTS0 COMMENTS
Milvus
85 POSTS0 COMMENTS
Nango Kala
6703 POSTS0 COMMENTS
Nicole Veronica
11867 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11928 POSTS0 COMMENTS
Shaida Kate Naidoo
6818 POSTS0 COMMENTS
Ted Musemwa
7080 POSTS0 COMMENTS
Thapelo Manthata
6775 POSTS0 COMMENTS
Umr Jansen
6776 POSTS0 COMMENTS