Friday, December 27, 2024
Google search engine
HomeLanguagesPython | Pandas dataframe.ne()

Python | Pandas dataframe.ne()

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas dataframe.ne() function checks for inequality of a dataframe element with a constant, series or other dataframe element-wise. If two values in comparison are not equal to each other, it returns a true else if they are equal it returns false. 
 

Syntax: DataFrame.ne(other, axis=’columns’, level=None)
Parameters : 
other : Series, DataFrame, or constant 
axis : For Series input, axis to match Series index on 
level :Broadcast across a level, matching Index values on the passed MultiIndex level
Returns : result : DataFrame
 

Example #1: Use ne() function to check for inequality between series and a dataframe.
 

Python3




# importing pandas as pd
import pandas as pd
 
# Creating the first dataframe
df1=pd.DataFrame({"A":[14,4,5,4,1],
                  "B":[5,2,54,3,2],
                  "C":[20,20,7,3,8],
                  "D":[14,3,6,2,6]})
 
# Print the dataframe
df1


Let’s create the series
 

Python3




# importing pandas as pd
import pandas as pd
 
# create series
sr = pd.Series([3, 2, 4, 5, 6])
 
# Print series
sr


Lets use the dataframe.ne() function to evaluate for inequality 
 

Python3




# evaluate inequality over the index axis
df.ne(sr, axis = 0)


Output : 
 

All true value cells indicate that values in comparison are not equal to each other whereas, all the false values cells indicate that values in comparison are equal to each other. 
  
Example #2: Use ne() function to check for inequality of two dataframes. One dataframe contains NA values.
 

Python3




# importing pandas as pd
import pandas as pd
 
# Creating the first dataframe
df1=pd.DataFrame({"A":[14,4,5,4,1],
                  "B":[5,2,54,3,2],
                  "C":[20,20,7,3,8],
                  "D":[14,3,6,2,6]})
 
# Creating the second dataframe with <code>Na</code> value
df2=pd.DataFrame({"A":[12,4,5,None,1],
                  "B":[7,2,54,3,None],
                  "C":[20,16,11,3,8],
                  "D":[14,3,None,2,6]})
 
# Print the second dataframe
df2


Let’s use the dataframe.ne() function.
 

Python3




# passing df2 to check for inequality with the df1 dataframe.
d1f.ne(df2)


Output : 
 

All true value cells indicate that values in comparison are not equal to each other whereas, all the false values cells indicate that values in comparison are equal to each other.
 

RELATED ARTICLES

Most Popular

Recent Comments