Monday, January 27, 2025
Google search engine
HomeLanguagesPython | Pandas dataframe.get_dtype_counts()

Python | Pandas dataframe.get_dtype_counts()

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.

Pandas dataframe.get_dtype_counts() function returns the counts of dtypes in the given object. It returns a pandas series object containing the counts of all data types present in the pandas object. It works with pandas series as well as dataframe.

Syntax: DataFrame.get_dtype_counts()

Returns : value : Series : Counts of datatypes

For link to CSV file Used in Code, click here

Example #1: Use get_dtype_counts() function to find the counts of datatype of a pandas dataframe object.




# importing pandas as pd
import pandas as pd
  
# Creating the dataframe 
df = pd.read_csv("nba.csv")
  
# Print the dataframe
df


Now apply the get_dtype_counts() function. Find out the frequency of occurrence of each data type in the dataframe.




# applying get_dtype_counts() function 
df.get_dtype_counts()


Output :

Notice, the output is a pandas series object containing the count of each data types in the dataframe.
 

Example #2: Use get_dtype_counts() function over a selected no. of columns of the data frame only.




# importing pandas as pd
import pandas as pd
  
# Creating the dataframe 
df = pd.read_csv("nba.csv")
  
# Applying get_dtype_counts() function to 
# find the data type counts in modified dataframe.
df[["Salary", "Name", "Team"]].get_dtype_counts()


Notice, the output is a pandas series object containing the count of each data types in the dataframe. We can verify all these results using this the dataframe.info() function.




# Find out the types of all columns in the dataframe
df.info()


Output :

RELATED ARTICLES

Most Popular

Recent Comments