Thursday, September 4, 2025
HomeLanguagesPython | Pandas DataFrame.ftypes

Python | Pandas DataFrame.ftypes

Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas.

Pandas DataFrame.ftypes attribute return the ftypes (indication of sparse/dense and dtype) in DataFrame. It returns a Series with the data type of each column.

Syntax: DataFrame.ftypes

Parameter : None

Returns : series

Example #1: Use DataFrame.ftypes attribute to check if the columns are sparse or dense in the given Dataframe.




# importing pandas as pd
import pandas as pd
  
# Creating the DataFrame
df = pd.DataFrame({'Weight':[45, 88, 56, 15, 71],
                   'Name':['Sam', 'Andrea', 'Alex', 'Robin', 'Kia'],
                   'Age':[14, 25, 55, 8, 21]})
  
# Create the index
index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']
  
# Set the index
df.index = index_
  
# Print the DataFrame
print(df)


Output :

Now we will use DataFrame.ftypes attribute to check the ftype of the columns in the given dataframe.




# check if the column are 
# dense or sparse
result = df.ftypes
  
# Print the result
print(result)


Output :

As we can see in the output, the DataFrame.ftypes attribute has successfully returned a series containing the ftypes of each column in the given dataframe.
 
Example #2: Use DataFrame.ftypes attribute to check if the columns are sparse or dense in the given Dataframe.




# importing pandas as pd
import pandas as pd
  
# Create an array
arr = [100, 35, 125, 85, 35]
  
# Creating a sparse DataFrame
df = pd.SparseDataFrame(arr)
  
# Print the DataFrame
print(df)


Output :

Now we will use DataFrame.ftypes attribute to check the ftype of the columns in the given dataframe.




# check if the column are 
# dense or sparse
result = df.ftypes
  
# Print the result
print(result)


Output :

As we can see in the output, the DataFrame.ftypes attribute has successfully returned the ftype of the given dataframe.

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32264 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6632 POSTS0 COMMENTS
Nicole Veronica
11800 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11860 POSTS0 COMMENTS
Shaida Kate Naidoo
6749 POSTS0 COMMENTS
Ted Musemwa
7025 POSTS0 COMMENTS
Thapelo Manthata
6698 POSTS0 COMMENTS
Umr Jansen
6718 POSTS0 COMMENTS