Saturday, October 25, 2025
HomeLanguagesPython | Pandas dataframe.clip_upper()

Python | Pandas dataframe.clip_upper()

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.

Pandas dataframe.clip_upper() is used to trim values at specified input threshold. We use this function to trim all the values above the threshold of the input value to the specified input value.

Syntax: DataFrame.clip_upper(threshold, axis=None, inplace=False)

Parameters:
threshold : float or array_like
float : every value is compared to threshold.
array-like : The shape of threshold should match the object it’s compared to. When self is a Series, threshold should be the length. When self is a DataFrame, threshold should 2-D and the same shape as self for axis=None, or 1-D and the same length as the axis being compared.
axis : Align object with threshold along the given axis.
inplace : Whether to perform the operation in place on the data.

Returns: clipped : same type as input

Example #1: Use clip_upper() function to trim values of a data frame above a given threshold value.




# importing pandas as pd
import pandas as pd
  
# Creating a dataframe using dictionary
df = pd.DataFrame({"A":[-5, 8, 12, -9, 5, 3],
                   "B":[-1, -4, 6, 4, 11, 3],
                   "C":[11, 4, -8, 7, 3, -2]})
  
# Printing the data frame for visualization
df


Now trim all the values above 8 to 8.




# Clip all values below 2
df.clip_upper(8)


Output :

 
Example #2: Use clip_upper() function to clips values in a dataframe with specific value for each cell of the dataframe.

For this purpose, we can use a numpy array, but the shape of array must be same as that of the dataframe.




# importing pandas as pd
import pandas as pd
  
# Creating a dataframe using dictionary
  
df = pd.DataFrame({"A":[-5, 8, 12, -9, 5, 3], 
                   "B":[-1, -4, 6, 4, 11, 3],
                   "C":[11, 4, -8, 7, 3, -2]})
  
# upper limit for each individual column element.
limit = np.array([[10, 2, 8], [3, 5, 3], [2, 4, 6],
                  [11, 2, 3], [5, 2, 3], [4, 5, 3]])
  
# Print upper_limit
limit


Now apply these limits on the dataframe.




# applying different limit value
# for each cell in the dataframe
df.clip_upper(limit)


Output :

Each cell value has been trimmed based on the corresponding upper limit applied.

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS