Saturday, September 6, 2025
HomeLanguagesPython | Pandas dataframe.at_time()

Python | Pandas dataframe.at_time()

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandasdataframe.at_time() function is used to select all the values in a row corresponding to the input time of the day. If the input time is not present in the dataframe then an empty dataframe is returned.
 

Syntax: DataFrame.at_time(time, asof=False)
Parameters: 
time : datetime.time or string
Returns: values_at_time : type of caller
 

Note: at_time() function raises exception when the index of the dataframe is not a DatetimeIndex
Example #1: Create a datetime indexed dataframe and retrieve the values at any specific time 
 

Python3




# importing pandas as pd
import pandas as pd
 
# Creating row index values for dataframe
# Taken time frequency to be of 12 hours interval
 
# Generating five index value using "period = 5" parameter
ind = pd.date_range('01/ 01/2000', periods = 5, freq ='12H')
 
# Creating a dataframe with 2 columns
# using "ind" as the index for our dataframe
 
df = pd.DataFrame({"A":[1, 2, 3, 4, 5],
                   "B":[10, 20, 30, 40, 50]},
                                 index = ind)
 
# Printing the dataframe
# for visualization
df


Now find out the values at time “12:00”
 

Python3




df.at_time('12:00')


Output : 
 

 
Example #2: Set the frequency of date_time index for 30 minute duration and query for both valid and invalid time (Not present in the dataframe) .
 

Python3




# importing pandas as pd
import pandas as pd
 
# Creating row index values for our data frame
# We have taken time frequency to be of 30 minutes interval
# We are generating eight index value using "period = 8" parameter
 
ind = pd.date_range('01/01/2000', periods = 8, freq ='30T')
 
# Creating a dataframe with 2 columns
# using "ind" as the index for our dataframe
df = pd.DataFrame({"A":[1, 2, 3, 4, 5, 6, 7, 8],
                   "B":[10, 20, 30, 40, 50, 60, 70, 80]},
                                             index = ind)
 
# Printing the dataframe
df


Now let’s query for time “02:00”
 

Python3




# Find the row values at time "02:00"
df.at_time('02:00')


Output : 
 

 

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32270 POSTS0 COMMENTS
Milvus
82 POSTS0 COMMENTS
Nango Kala
6639 POSTS0 COMMENTS
Nicole Veronica
11803 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11869 POSTS0 COMMENTS
Shaida Kate Naidoo
6752 POSTS0 COMMENTS
Ted Musemwa
7029 POSTS0 COMMENTS
Thapelo Manthata
6704 POSTS0 COMMENTS
Umr Jansen
6721 POSTS0 COMMENTS