Friday, October 10, 2025
HomeLanguagesPython | Numpy np.legvander2d() method

Python | Numpy np.legvander2d() method

With the help of np.legvander2d() method, we can get the Pseudo-Vandermonde matrix from given array having degree which is passed as parameter by using np.legvander2d() method.

Syntax : np.legvander2d(x, y, deg)
Parameters:
x, y :[ array_like ] Array of points. The dtype is converted to float64 or complex128 depending on whether any of the elements are complex. If x is scalar it is converted to a 1-D array
deg :[int] Degree of the resulting matrix.

Return : Return the matrix having size i.e array.size + (degree + 1).

Example #1 :
In this example we can see that by using np.legvander2d() method, we are able to get the pseudo-vandermonde matrix using this method.




# import numpy
import numpy as np
import numpy.polynomial.legendre as geek
  
# using np.legvander() method
ans = geek.legvander2d((1, 3, 5, 7), (2, 4, 6, 8), [2, 2])
  
print(ans)


Output :

[[ 1.00000000e+00 2.00000000e+00 5.50000000e+00 1.00000000e+00
2.00000000e+00 5.50000000e+00 1.00000000e+00 2.00000000e+00
5.50000000e+00]
[ 1.00000000e+00 4.00000000e+00 2.35000000e+01 3.00000000e+00
1.20000000e+01 7.05000000e+01 1.30000000e+01 5.20000000e+01
3.05500000e+02]
[ 1.00000000e+00 6.00000000e+00 5.35000000e+01 5.00000000e+00
3.00000000e+01 2.67500000e+02 3.70000000e+01 2.22000000e+02
1.97950000e+03]
[ 1.00000000e+00 8.00000000e+00 9.55000000e+01 7.00000000e+00
5.60000000e+01 6.68500000e+02 7.30000000e+01 5.84000000e+02
6.97150000e+03]]

Example #2 :




# import numpy
import numpy as np
import numpy.polynomial.legendre as geek
  
ans = geek.legvander2d((1, 2, 3, 4), (5, 6, 7, 8), [3, 3])
  
print(ans)


Output :

[[ 1.00000000e+00 5.00000000e+00 3.70000000e+01 3.05000000e+02
1.00000000e+00 5.00000000e+00 3.70000000e+01 3.05000000e+02
1.00000000e+00 5.00000000e+00 3.70000000e+01 3.05000000e+02
1.00000000e+00 5.00000000e+00 3.70000000e+01 3.05000000e+02]
[ 1.00000000e+00 6.00000000e+00 5.35000000e+01 5.31000000e+02
2.00000000e+00 1.20000000e+01 1.07000000e+02 1.06200000e+03
5.50000000e+00 3.30000000e+01 2.94250000e+02 2.92050000e+03
1.70000000e+01 1.02000000e+02 9.09500000e+02 9.02700000e+03]
[ 1.00000000e+00 7.00000000e+00 7.30000000e+01 8.47000000e+02
3.00000000e+00 2.10000000e+01 2.19000000e+02 2.54100000e+03
1.30000000e+01 9.10000000e+01 9.49000000e+02 1.10110000e+04
6.30000000e+01 4.41000000e+02 4.59900000e+03 5.33610000e+04]
[ 1.00000000e+00 8.00000000e+00 9.55000000e+01 1.26800000e+03
4.00000000e+00 3.20000000e+01 3.82000000e+02 5.07200000e+03
2.35000000e+01 1.88000000e+02 2.24425000e+03 2.97980000e+04
1.54000000e+02 1.23200000e+03 1.47070000e+04 1.95272000e+05]]

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32348 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6715 POSTS0 COMMENTS
Nicole Veronica
11878 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6837 POSTS0 COMMENTS
Ted Musemwa
7097 POSTS0 COMMENTS
Thapelo Manthata
6792 POSTS0 COMMENTS
Umr Jansen
6791 POSTS0 COMMENTS