Saturday, November 22, 2025
HomeLanguagesPython – Moyal Distribution in Statistics

Python – Moyal Distribution in Statistics

scipy.stats.moyal() is a Moyal continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution.

Parameters :

q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : Moyal continuous random variable

Code #1 : Creating Moyal continuous random variable




# importing library
  
from scipy.stats import moyal  
    
numargs = moyal.numargs 
a, b = 4.32, 3.18
rv = moyal(a, b) 
    
print ("RV : \n", rv)  


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D65832480x000002A9D6583248

Code #2 : Moyal continuous variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = moyal.rvs(a, b) 
print ("Random Variates : \n", R) 
  
# PDF 
R = moyal.pdf(a, b, quantile) 
print ("\nProbability Distribution : \n", R) 


Output :

Random Variates : 
 -0.10758844036768522

Probability Distribution : 
 [7.01656572e-24 2.03739617e-02 1.25585161e-01 2.02076426e-01
 2.34901631e-01 2.42507808e-01 2.37825337e-01 2.27718227e-01
 2.15604463e-01 2.03139800e-01]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.pdf(distribution)) 


Output :

Distribution : 
 [0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2.        ]
 

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
     
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = moyal .pdf(x, 1, 3
y2 = moyal .pdf(x, 1, 4
plt.plot(x, y1, "*", x, y2, "r--"


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32407 POSTS0 COMMENTS
Milvus
97 POSTS0 COMMENTS
Nango Kala
6784 POSTS0 COMMENTS
Nicole Veronica
11931 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11999 POSTS0 COMMENTS
Shaida Kate Naidoo
6907 POSTS0 COMMENTS
Ted Musemwa
7168 POSTS0 COMMENTS
Thapelo Manthata
6863 POSTS0 COMMENTS
Umr Jansen
6848 POSTS0 COMMENTS