Friday, September 5, 2025
HomeLanguagesPython – Mielke Distribution in Statistics

Python – Mielke Distribution in Statistics

scipy.stats.mielke() is a Mielke Beta-Kappa / Dagum continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution.

Parameters :

q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : Mielke continuous random variable

Code #1 : Creating Mielke continuous random variable




# importing library
  
from scipy.stats import mielke  
    
numargs = mielke.numargs 
a, b = 4.32, 3.18
rv = mielke(a, b) 
    
print ("RV : \n", rv)  


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D6DD04C8


Code #2 : Mielke continuous variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = mielke.rvs(a, b) 
print ("Random Variates : \n", R) 
  
# PDF 
R = mielke.pdf(a, b, quantile) 
print ("\nProbability Distribution : \n", R) 


Output :

Random Variates : 
 0.541154909484041

Probability Distribution : 
 [6.94878143e-96 6.26408333e-09 7.39143540e-05 1.84143774e-03
 8.76316044e-03 2.10584824e-02 3.57237873e-02 4.95347163e-02
 6.04795424e-02 6.78033254e-02]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.pdf(distribution)) 


Output :
Distribution :
[0. 0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
0.48979592 0.53061224 0.57142857 0.6122449 0.65306122 0.69387755
0.73469388 0.7755102 0.81632653 0.85714286 0.89795918 0.93877551
0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
1.2244898 1.26530612 1.30612245 1.34693878 1.3877551 1.42857143
1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
1.95918367 2. ]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
     
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = mielke .pdf(x, 1, 3
y2 = mielke .pdf(x, 1, 4
plt.plot(x, y1, "*", x, y2, "r--"


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32266 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6635 POSTS0 COMMENTS
Nicole Veronica
11801 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11864 POSTS0 COMMENTS
Shaida Kate Naidoo
6752 POSTS0 COMMENTS
Ted Musemwa
7026 POSTS0 COMMENTS
Thapelo Manthata
6703 POSTS0 COMMENTS
Umr Jansen
6720 POSTS0 COMMENTS