Monday, January 27, 2025
Google search engine
HomeLanguagesPython | Math operations for Data analysis

Python | Math operations for Data analysis

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric Python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
There are some important math operations that can be performed on a pandas series to simplify data analysis using Python and save a lot of time.

To get the data-set used, click here

s=read_csv("stock.csv", squeeze=True)
#reading csv file and making series
Function Use
s.sum() Returns sum of all values in the series
s.mean()

Returns mean of all values in series. Equals to s.sum()/s.count() 
 

 

s.std() Returns standard deviation of all values
s.min() or s.max() Return min and max values from series
s.idxmin() or s.idxmax() Returns index of min or max value in series
s.median() Returns median of all value
s.mode() Returns mode of the series
s.value_counts()

Returns series with frequency of each value 
 

 

s.describe()

Returns a series with information like mean, mode, etc depending on dtype of data passed 
 

 

Code #1: 

Python3




# import pandas for reading csv file
import pandas as pd
 
#reading csv file
s = pd.read_csv("stock.csv", squeeze = True)
 
#using count function
print(s.count())
 
#using sum function
print(s.sum())
 
#using mean function
print(s.mean())
 
#calculation average
print(s.sum()/s.count())
 
#using std function
print(s.std())
 
#using min function
print(s.min())
 
#using max function
print(s.max())
 
#using count function
print(s.median())
 
#using mode function
print(s.mode())


Output:  

3012
1006942.0
334.3100929614874
334.3100929614874
173.18720477113115
49.95
782.22
283.315
0    291.21

Code #2: 

Python3




# import pandas for reading csv file
import pandas as pd
 
#reading csv file
s = pd.read_csv("stock.csv", squeeze = True)
 
#using describe function
print(s.describe())
 
#using count function
print(s.idxmax())
 
#using idxmin function
print(s.idxmin())
 
#count of elements having value 3
print(s.value_counts().head(3))


Output: 

dtype: float64
count    3012.000000
mean      334.310093
std       173.187205
min        49.950000
25%       218.045000
50%       283.315000
75%       443.000000
max       782.220000
Name: Stock Price, dtype: float64

3011
11
291.21    5
288.47    3
194.80    3
Name: Stock Price, dtype: int64

Unexpected Outputs and Restrictions:

  1. .sum(), .mean(), .mode(), .median() and other such mathematical operations are not applicable on string or any other data type than numeric value.
  2. .sum() on a string series would give an unexpected output and return a string by concatenating every string.
RELATED ARTICLES

Most Popular

Recent Comments