Thursday, September 18, 2025
HomeLanguagesPython – kappa3 Distribution in Statistics

Python – kappa3 Distribution in Statistics

scipy.stats.kappa3() is an Kappa 3 continuous random variable that is defined with a standard format and some shape parameters to complete its specification. The probability density is defined in the standard form and the loc and scale parameters are used to shift and/or scale the distribution.

Parameters :

q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : kappa3 continuous random variable

Code #1 : Creating kappa3 continuous random variable




# importing library
  
from scipy.stats import kappa3  
    
numargs = kappa3.numargs 
a, b = 4.32, 3.18
rv = kappa3(a, b) 
    
print ("RV : \n", rv)  


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D51A5F48


Code #2 : Johnson SU continuous variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = kappa3.rvs(a, b, scale = 2, size = 10
print ("Random Variates : \n", R) 


Output :

Random Variates : 
 [5.52352397 4.77488722 5.6151088  5.46494471 3.7711133  4.89730708
 3.21392979 8.8291956  3.47994212 3.28716187]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.pdf(distribution)) 


Output :

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]
 

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
     
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = kappa3.pdf(x, 1, 3
y2 = kappa3.pdf(x, 1, 4
plt.plot(x, y1, "*", x, y2, "r--"


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32299 POSTS0 COMMENTS
Milvus
84 POSTS0 COMMENTS
Nango Kala
6660 POSTS0 COMMENTS
Nicole Veronica
11835 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11895 POSTS0 COMMENTS
Shaida Kate Naidoo
6779 POSTS0 COMMENTS
Ted Musemwa
7053 POSTS0 COMMENTS
Thapelo Manthata
6735 POSTS0 COMMENTS
Umr Jansen
6741 POSTS0 COMMENTS